Skip to main content
Log in

Use of reference tissue models for quantification of histamine H1 receptors in human brain by using positron emission tomography and [11C]doxepin

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The aim of the present study is to evaluate the validity of the simplified reference tissue model (SRTM) and of Logan graphical analysis with reference tissue (LGAR) for quantification of histamine H1 receptors (H1Rs) by using positron emission tomography (PET) with [11C]doxepin. These model-based analytic methods (SRTM and LGAR) are compared to Logan graphical analysis (LGA) and to the one-tissue model (1TM), using complete datasets obtained from 5 healthy volunteers. Since H1R concentration in the cerebellum can be regarded as negligibly small, the cerebellum was selected as the reference tissue in the present study. The comparison of binding potential (BP) values estimated by LGAR and 1TM showed good agreement; on the other hand, SRTM turned out to be unstable concerning parameter estimation in several regions of the brain. By including the results of noise analysis, LGAR became a reliable method for parameter estimation of [11C]doxepin data in the cortical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system.Nat Rev Neurosci 2003; 4 (2): 121–130.

    Article  PubMed  CAS  Google Scholar 

  2. Yanai K, Okamura N, Tagawa M, Itoh M, Watanabe T. New findings in pharmacological effects induced by antihista- mines: from PET studies to knock-out mice.Clin Exp Allergy 1999; 29 Suppl 3: 29–36; discussion 37–38.

    Article  PubMed  CAS  Google Scholar 

  3. Huang ZL, Qu WM, Li WD, Mochizuki T, Eguchi N, Watanabe T, et al. Arousal effect of orexin A depends on activation of the histaminergic system.Proc Natl Acad Sci USA 2001; 98 (17): 9965–9970.

    Article  PubMed  CAS  Google Scholar 

  4. Yanai K, Watanabe T, Yokoyama H, Meguro K, Hatazawa J, Itoh M, et al. Histamine H1 receptors in human brain visualizedin vivo by [11C]doxepin and positron emission tomography.Neurosci Lett 1992; 137 (2): 145–148.

    Article  PubMed  CAS  Google Scholar 

  5. Ishiwata K, Kawamura K, Wang WF, Tsukada H, Harada N, Mochizuki H, et al. Evaluation ofin vivo selective binding of [11C]doxepin to histamine H1 receptors in five animal species.Nucl Med Biol 2004; 31 (4): 493–502.

    Article  PubMed  CAS  Google Scholar 

  6. Higuchi M, Yanai K, Okamura N, Meguro K, Arai H, Itoh M, et al. Histamine H(l) receptors in patients with Alzheimer’s disease assessed by positron emission tomography.Neuroscience 2000; 99 (4): 721–729.

    Article  PubMed  CAS  Google Scholar 

  7. Iinuma K, Yokoyama H, Otsuki T, Yanai K, Watanabe T, Ido T, et al. Histamine H1 receptors in complex partial seizures.Lancet 1993; 341 (8839): 238.

    Article  PubMed  CAS  Google Scholar 

  8. Yanai K, Ryu JH, Watanabe T, Iwata R, Ido T, Sawai Y, et al. Histamine H1 receptor occupancy in human brains after single oral doses of histamine H1 antagonists measured by positron emission tomography.Br J Pharmacol 1995; 116 (1): 1649–1655.

    PubMed  CAS  Google Scholar 

  9. Tagawa M, Kano M, Okamura N, Higuchi M, Matsuda M, Mizuki Y, et al. Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine.Br J Clin Pharmacol 2001; 52 (5):501–509.

    Article  PubMed  CAS  Google Scholar 

  10. Tashiro M, Sakurada Y, Iwabuchi K, Mochizuki H, Kato M, Aoki M, et al. Central Effects of Fexofenadine and Cetirizine: Measurement of Psychomotor Performance, Subjective Sleepiness, and Brain Histamine H1-Receptor Occupancy Using11C-Doxepin Positron Emission Tomography.J Clin Pharmacol 2004; 44 (8): 890–900.

    Article  PubMed  CAS  Google Scholar 

  11. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N- 11C-methyl]-(-)-cocaine PET studies in human subjects.J Cereb Blood Flow Metab 1990; 10 (5): 740–747.

    PubMed  CAS  Google Scholar 

  12. Mochizuki H, Kimura Y, Ishii K, Oda K, Sasaki T, Tashiro M, et al. Quantitative measurement of histamine H(l) receptors in human brains by PET and [11C]doxepin.Nucl Med Biol 2004; 31 (2): 165–171.

    Article  PubMed  CAS  Google Scholar 

  13. Mochizuki H, Kimura Y, Ishii K, Oda K, Sasaki T, Tashiro M, et al. Simplified PET measurement for evaluating histamine H1 receptors in human brains using [11C]doxepin.Nucl Med Biol (in press).

  14. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies.Neuroimage 1996; 4 (3 Pt 1): 153–158.

    Article  PubMed  CAS  Google Scholar 

  15. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data.J Cereb Blood Flow Metab 1996; 16 (5): 834–840.

    Article  PubMed  CAS  Google Scholar 

  16. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for thein vivo assessment of drug binding sites with positron emission tomography.Ann Neurol 1984; 15 (3): 217–227.

    Article  PubMed  CAS  Google Scholar 

  17. Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography.J Cereb Blood Flow Metab 1991; 11 (5): 735–744.

    PubMed  CAS  Google Scholar 

  18. Phelps ME, Huang SC, Hoffman EJ, Kühl DE. Validation of tomographic measurement of cerebral blood volume with C-11-labeled carboxyhemoglobin.J Nucl Med 1979;20 (4): 328–334.

    PubMed  CAS  Google Scholar 

  19. Carson RE, Parameters estimation in positron emission tomography. In:Positron emission tomography. Principles and applications for the brain and the heart. Phelps ME, Mazziotta JC, Scheiben HR (eds.) New York; Raven Press, 1986: 347–390.

    Google Scholar 

  20. Kanba S, Richelson E. Histamine H1 receptors in human brain labelled with [3H]doxepin.Brain Res 1984; 304 (1):1–7.

    Article  PubMed  CAS  Google Scholar 

  21. Kimura Y, Senda M, Alpert NM. Fast formation of statistically reliable FDG parametric images based on clustering and principal components.Phys Med Biol 2002; 47 (3):455–468.

    Article  PubMed  CAS  Google Scholar 

  22. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model.Neuroimage 1997; 6 (4): 279–287.

    Article  PubMed  CAS  Google Scholar 

  23. Jensen SB, Smith DF, Bender D, Jakobsen S, Peters D, Nielsen EO. [11C]-NS 4194 versus [11C]-DASB for PET imaging of serotonin transporters in living porcine brain.Synapse 2003; 49: 170–177.

    Article  PubMed  CAS  Google Scholar 

  24. Sossi V, Holden JE, Chan G, Krzywinski M, Stoessl AJ, Ruth TJ. Analysis of four dopaminergic tracers kinetics using two different tissue input function methods.J Cereb Blood Flow Metab 2000; 20 (4): 653–660.

    Article  PubMed  CAS  Google Scholar 

  25. Yanai K, Watanabe T, Meguro K, Yokoyama H, Sato I, Sasano H, et al. Age-dependent decrease in histamine H1 receptor in human brains revealed by PET.Neuroreport 1992; 3 (5): 433–436.

    Article  PubMed  CAS  Google Scholar 

  26. Logan J, Fowler JS, Ding YS, Franceschi D, Wang GJ, Volkow ND, et al. Strategy for the formation of parametric images under conditions of low injected radioactivity applied to PET studies with the irreversible monoamine oxidase A tracers [11C]clorgyline and deuterium-substituted [11C]clorgyline.J Cereb Blood Flow Metab 2002; 22 (11):1367–1376.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuro Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, A., Tashiro, M., Kimura, Y. et al. Use of reference tissue models for quantification of histamine H1 receptors in human brain by using positron emission tomography and [11C]doxepin. Ann Nucl Med 19, 425–433 (2005). https://doi.org/10.1007/BF02985569

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02985569

Key words

Navigation