Skip to main content
Log in

Myocardial perfusion imaging in pediatric cardiology

  • Review
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Myocardial perfusion imaging (MPI) is an important procedure in pediatric cardiology in terms of evaluating myocardial ischemia, infarction and damage associated with various congenital or acquired heart diseases, such as Kawasaki disease, anomalous origin of the left coronary artery from the pulmonary artery and complete transposition of the great arteries after arterial switch surgery. This type of imaging can detect myocardial damage in the morphological right ventricle when it functions as a systemic pumping chamber in patients with complex congenital heart diseases after intra-cardiac repair. Myocardial perfusion imaging can also evaluate myocardial damage associated with primary or secondary cardiomyopathy in children. The magnitude of increased right ventricular uptake on MPI is a useful noninvasive means of estimating right ventricular pressure overload due to congenital heart or pulmonary diseases. This article reviews myocardial perfusion tracers and pharmacological stress tests used to diagnose heart conditions in children, and the current clinical roles of MPI in pediatric cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Flynn B, Wernovsky G, Summerville DA, Castaneda AR, Treves ST. Comparison of technetium-99m MIBI and thallium-201 chloride myocardial scintigraphy in infants.J NuclMed 1989; 30: 1176–1181.

    CAS  Google Scholar 

  2. ICRP. Radiation dose to patients from radiopharmaceuticals, ICRP Publication 80.Annals of the ICRP 1998; 28.

  3. Kondo C, Hiroe M, Nakanishi T, Takao A. Detection of coronary artery stenosis in children with Kawasaki disease. Usefulness of pharmacologic stress201Tl myocardial tomography.Circulation 1989; 80: 615–624.

    PubMed  CAS  Google Scholar 

  4. Kondo C, Nakanishi T, Sonobe T, Tatara K, Momma K, Kusakabe K. Scintigraphic monitoring of coronary artery occlusion due to Kawasaki disease.Am J Cardiol 1993; 71: 681–685.

    Article  PubMed  CAS  Google Scholar 

  5. Yamazumi R, Kobayashi H, Horie T, Asano R, Momose M, Kusakabe K, et al. High incidence of false positive results of thallium-201 myocardial stress scintigraphy for the evaluation of artery bypass graft patency after CABG.KAKU IGAKU(Jpn J Nucl Med) 1995; 32: 271–279.

    CAS  Google Scholar 

  6. Ohmochi Y, Onouchi Z, Oda Y, Hamaoka K. Assessment of effects of intravenous dipyridamole on regional myocardial perfusion in children with Kawasaki disease without angiographic evidence of coronary stenosis using positron emission tomography and H2 15O.Coron Artery Dis 1995; 6: 555–559.

    PubMed  CAS  Google Scholar 

  7. Fukazawa M, Fukushige J, Takeuchi T, Narabayashi H, Igarashi H, Hijii T, et al. Discordance between thallium-201 scintigraphy and coronary angiography in patients with Kawasaki disease: myocardial ischemia with normal coro- nary angiogram.Pediatr Cardiol 1993; 14: 67–74.

    Article  PubMed  CAS  Google Scholar 

  8. Miyagawa M, Mochizuki T, Murase K, Tanada S, Ikezoe J, Sekiya M, et al. Prognostic value of dipyridamole-thallium myocardial scintigraphy in patients with Kawasaki disease.Circulation 1998; 98: 990–996.

    PubMed  CAS  Google Scholar 

  9. Fukuda T. Myocardial ischemia in Kawasaki disease; evaluation by dipyridamole stress thallium-201 (Tl-201) myocardial imaging and exercise stress test.Kurume Med J 1992; 39: 245–255.

    PubMed  CAS  Google Scholar 

  10. Fukuda T, Akagi T, Ishibashi M, Inoue O, Sugimura T, Kato H. Noninvasive evaluation of myocardial ischemia in Kawasaki disease: comparison between dipyridamole stress thallium imaging and exercise stress testing.Am Heart J 1998; 135: 482–487.

    Article  PubMed  CAS  Google Scholar 

  11. Fukuda T, Ishibashi M, Yokoyama T, Otaki M, Shinohara T, Nakamura Y, et al. Myocardial ischemia in Kawasaki disease: evaluation with dipyridamole stress technetium 99m tetrofosmin scintigraphy.J Nucl Cardiol 2002; 9: 632–637.

    Article  PubMed  Google Scholar 

  12. Hiraishi S, Hirota H, Horiguchi Y, Takeda N, Fujino N, Ogawa N, et al. Transthoracic Doppler assessment of coronary flow velocity reserve in children with Kawasaki disease: comparison with coronary angiography and thallium-201 imaging.J Am Coll Cardiol 2002; 40: 1816–1824.

    Article  PubMed  Google Scholar 

  13. Tadamura E, Yoshibayashi M, Yonemura T, Kudoh T, Kubo S, Motooka M, et al. Significant regional heterogeneity of coronary flow reserve in paediatric hypertrophie cardiomyopathy.Eur J Nucl Med 2000; 27: 1340–1348.

    Article  PubMed  CAS  Google Scholar 

  14. Gnecchi-Ruscone T, Taylor J, Mercuri E, Paternostro G, Pogue R, Bushby K, et al. Cardiomyopathy in Duchenne, Becker, and sarcoglycanopathies: a role for coronary dysfunction?Muscle Nerve 1999; 22: 1549–1556.

    Article  PubMed  CAS  Google Scholar 

  15. Hauser M, Bengel FM, Kuhn A, Sauer U, Zylla S, Braun SL, et al. Myocardial blood flow and flow reserve after coronary reimplantation in patients after arterial switch and ross operation.Circulation 2001; 103: 1875–1880.

    PubMed  CAS  Google Scholar 

  16. Singh TP, Di Carli MF, Sullivan NM, Leonen MF, Morrow WR. Myocardial flow reserve in long-term survivors of repair of anomalous left coronary artery from pulmonary artery.J Am Coll Cardiol 1998; 31: 437–43.

    Article  PubMed  CAS  Google Scholar 

  17. Singh TP, Humes RA, Muzik O, Kottamasu S, Karpawich PP, Di Carli MF. Myocardial flow reserve in patients with a systemic right ventricle after atrial switch repair.J Am Coll Cardiol 2001; 37: 2120–2125.

    Article  PubMed  CAS  Google Scholar 

  18. Muzik O, Paridon SM, Singh TP, Morrow WR, Dayanikli F, Di Carli MF. Quantification of myocardial blood flow and flow reserve in children with a history of Kawasaki disease and normal coronary arteries using positron emission tomography.J Am Coll Cardiol 1996; 28: 757–762.

    Article  PubMed  CAS  Google Scholar 

  19. Furuyama H, Odagawa Y, Katoh C, Iwado Y, Yoshinaga K, Ito Y, et al. Assessment of coronary function in children with a history of Kawasaki disease using I5O-water positron emission tomography.Circulation 2002; 105: 2878–2884.

    Article  PubMed  Google Scholar 

  20. Prabhu AS, Singh TP, Morrow WR, Muzik O, Di Carli MF. Safety and efficacy of intravenous adenosine for pharmacologie stress testing in children with aortic valve disease or Kawasaki disease.Am J Cardiol 1999; 83: 284–286, A6.

    Article  PubMed  CAS  Google Scholar 

  21. Hamamichi Y, Ichida F, Tsubata S, Hirono K, Watanabe S, Rui C, et al. Dobutamine stress radionuclide ventriculography reveals silent myocardial dysfunction in Kawasaki disease.Circ J 2002; 66: 63–69.

    Article  PubMed  Google Scholar 

  22. Ogawa S, Fukazawa R, Ohkubo T, Zhang J, Takechi N, Kuramochi Y, et al. Silent myocardial ischemia in Kawasaki disease: evaluation of percutaneous transluminal coronary angioplasty by dobutamine stress testing.Circulation 1997; 96: 3384–3389.

    PubMed  CAS  Google Scholar 

  23. Hurwitz RA, Siddiqui A, Caldwell RL, Weetman RM, Girod DA. Assessment of ventricular function in infants and children. Response to dobutamine infusion.Clin Nucl Med 1990; 15: 556–559.

    Article  PubMed  CAS  Google Scholar 

  24. Jan SL, Hwang B, Fu YC, Lee PC, Kao CH, Liu RS, et al. Comparison of201Tl SPET and treadmill exercise testing in patients with Kawasaki disease.Nucl Med Commun 2000; 21: 431–435.

    Article  PubMed  CAS  Google Scholar 

  25. Gutgesell HP, Pinsky WW, DePuey EG. Thallium-201 myocardial perfusion imaging in infants and children. Value in distinguishing anomalous left coronary artery from congestive cardiomyopathy.Circulation 1980; 61: 596–599.

    PubMed  CAS  Google Scholar 

  26. Stern H, Sauer U, Locher D, Bauer R, Meisner H, Sebening F, et al. Left ventricular function assessed with echocardiography and myocardial perfusion assessed with scintigraphy under dipyridamole stress in pediatric patients after repair for anomalous origin of the left coronary artery from the pulmonary artery.J Thorac Cardiovasc Surg 1993; 106: 723–732.

    PubMed  CAS  Google Scholar 

  27. Hurwitz RA, Caldwell RL, Girod DA, Brown J, King H. Clinical and hemodynamic course of infants and children with anomalous left coronary artery.Am Heart J 1989; 118: 1176–1181.

    Article  PubMed  CAS  Google Scholar 

  28. Hayes AM, Baker EJ, Kakadeker A, Parsons JM, Martin RP, Radley-Smith R, et al. Influence of anatomic correction for transposition of the great arteries on myocardial perfusion: radionuclide imaging with technetium-99m 2-methoxy isobutyl isonitrile.J Am Coll Cardiol 1994; 24: 769–777.

    Article  PubMed  CAS  Google Scholar 

  29. Vogel M, Smallhorn JF, Gilday D, Benson LN, Ash J, Williams WG, et al. Assessment of myocardial perfusion in patients after the arterial switch operation.J Nucl Med 1991; 32: 237–241.

    PubMed  CAS  Google Scholar 

  30. Weindling SN, Wernovsky G, Colan SD, Parker JA, Boutin C, Mone SM, et al. Myocardial perfusion, function and exercise tolerance after the arterial switch operation.J Am Coll Cardiol 1994; 23: 424–433.

    PubMed  CAS  Google Scholar 

  31. Hornung TS, Bernard EJ, Jaeggi ET, Howman-Giles RB, Celermajer DS, Hawker RE. Myocardial perfusion defects and associated systemic ventricular dysfunction in congenitally corrected transposition of the great arteries.Heart 1998; 80: 322–326.

    PubMed  CAS  Google Scholar 

  32. Millane T, Bernard EJ, Jaeggi E, Howman-Giles RB, Uren RF, Cartmill TB, et al. Role of ischemia and infarction in late right ventricular dysfunction after atrial repair of transposition of the great arteries.J Am Coll Cardiol 2000; 35: 1661–1668.

    Article  PubMed  CAS  Google Scholar 

  33. Lubiszewska B, Gosiewska E, Hoffman P, Teresinska A, Rozanski J, Piotrowski W, et al. Myocardial perfusion and function of the systemic right ventricle in patients after atrial switch procedure for complete transposition: longterm follow-up.J Am Coll Cardiol 2000; 36: 1365–1370.

    Article  PubMed  CAS  Google Scholar 

  34. Kondo C, Nakazawa M, Kusakabe K, Momma K. Myocardial dysfunction and depressed fatty acid metabolism in patients with cyanotic congenital heart disease.J Nucl Cardiol 1996; 3: 30–36.

    Article  PubMed  CAS  Google Scholar 

  35. Rabinovitch M, Fischer KC, Treves S. Quantitative thallium-201 myocardial imaging in assessing right ventricular pressure in patients with congenital heart defects.Br Heart J 1981; 45: 198–205.

    Article  PubMed  CAS  Google Scholar 

  36. Nakajima K, Taki J, Ohno T, Taniguchi M, Bunko H, Hisada K. Assessment of right ventricular overload by a thallium-201 SPECT study in children with congenital heart disease.J Nucl Med 1991; 32: 2215–2220.

    PubMed  CAS  Google Scholar 

  37. Akiba T, Yoshikawa M, Otaki S, Nakasato M, Suzuki H, Sato S, et al. Estimation of right ventricular pressure in children by thallium-201 myocardial imaging using singlephoton emission computed tomography.Am J Cardiol 1992; 69: 673–676.

    Article  PubMed  CAS  Google Scholar 

  38. Nakajima K, Taki J, Taniguchi M, Tonami N, Hisida K. Comparison of99Tcm-sestamibi and201Tl-chloride to estimate right ventricular overload in children.Nucl Med Commun 1995; 16: 936–941.

    PubMed  CAS  Google Scholar 

  39. Dilsizian V, Bonow RO, Epstein SE, Fananapazir L. Myocardial ischemia detected by thallium scintigraphy is frequently related to cardiac arrest and syncope in young patients with hypertrophic cardiomyopathy.J Am Coll Cardiol 1993; 22: 796–804.

    Article  PubMed  CAS  Google Scholar 

  40. Yetman AT, McCrindle BW, MacDonald C, Freedom RM, Gow R. Myocardial bridging in children with hypertrophie cardiomyopathy-a risk factor for sudden death.N Engl J Med 1998; 339: 1201–1209.

    Article  PubMed  CAS  Google Scholar 

  41. Mohiddin SA, Begley D, Shih J, Fananapazir L. Myocardial bridging does not predict sudden death in children with hypertrophie cardiomyopathy but is associated with more severe cardiac disease.J Am Coll Cardiol 2000; 36: 2270–2278.

    Article  PubMed  CAS  Google Scholar 

  42. Perloff JK, Henze E, Scheiben HR. Alterations in regional myocardial metabolism, perfusion, and wall motion in Duchenne muscular dystrophy studied by radionuclide imaging.Circulation 1984; 69: 33–2.

    PubMed  CAS  Google Scholar 

  43. Nishimura T, Yanagisawa A, Sakata H, Sakata K, Shimoyama K, Ishihara T, et al. Thallium-201 single photon emission computed tomography (SPECT) in patients with Duchenne’s progressive muscular dystrophy: a histopathologic correlation study.Jpn Circ J 2001; 65: 99–105.

    Article  PubMed  CAS  Google Scholar 

  44. Quinlivan RM, Lewis P, Marsden P, Dundas R, Robb SA, Baker E, et al. Cardiac function, metabolism and perfusion in Duchenne and Becker muscular dystrophy.Neuromuscul Disord 1996; 6: 237–246.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chisato Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, C. Myocardial perfusion imaging in pediatric cardiology. Ann Nucl Med 18, 551–561 (2004). https://doi.org/10.1007/BF02984576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02984576

Key words

Navigation