Skip to main content
Log in

Wilms Tumor Gene (WT1) Expression as a Panleukemic Marker

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

The Wilms tumor gene (WT1) is expressed in blasts of patients with acute leukemia, irrespective of lineage, and WT1 nuclear protein is detectable in the majority of such blasts. Only very few physiologic hematopoietic progenitors expressWT1, but theWT1 expression level of these progenitors and that of leukemic blasts are comparable. Although not specific for acute hematologic malignant diseases, continuousWT1 expression in almost all leukemic blasts strikingly contrasts to its rather transient expression in very few physiologic hematopoietic progenitors. Quantitative and semiquantitativeWT1 reverse transcriptase polymerase chain reaction (RT-PCR) protocols have limitations in discriminating physiologic from pathologic overallWT1 expression levels in mononuclear cell preparations. Because of these limitations, reports conflict on the usefulness of long-term monitoring ofWT1 expression in patients with acute leukemia. Real-time quantitativeWT1 RT-PCR protocols, however, have been developed and tested in small series of patients with acute leukemia. Such protocols hold promise to enable evaluation of the individual treatment response (short-term monitoring) and early diagnosis of imminent relapse through the detection and long-term monitoring of minimal residual disease in patients with acute leukemia. These protocols also should facilitate the notoriously difficult distinction between eosinophilic leukemia and hypereosinophilic syndromes. Data onWT1 expression in leukemic blasts and their physiologic counterparts are discussed in light of clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GAP. Homozygous deletions in Wilms’ tumours of a zinc-finger gene identified by chromosome jumping.Nature. 1990;343:774–778.

    Article  PubMed  CAS  Google Scholar 

  2. Call KM, Glaser T, Ito CY, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus.Cell. 1990;60:509–520.

    Article  PubMed  CAS  Google Scholar 

  3. Rose EA, Glaser T, Jones C, et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene.Cell. 1990;60:495–510.

    Article  PubMed  CAS  Google Scholar 

  4. Scharnhorst V, van der Eb AJ, Jochemsen AG. WT1 proteins: functions in growth and differentiation.Gene. 2001;273:141–161.

    Article  PubMed  CAS  Google Scholar 

  5. Pritchard-Jones K, Fleming S, Davidson D, et al. The candidate Wilms’ tumour gene is involved in genitourinary development.Nature. 1990;346:194–197.

    Article  PubMed  CAS  Google Scholar 

  6. Armstrong JF, Pritchard-Jones K, Bickmore WA, Hastie ND, Bard JB. The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo.Mech Dev. 1993;40:85–97.

    Article  PubMed  CAS  Google Scholar 

  7. Kudoh T, Ishidate T, Moriyama M, Toyoshima K, Akiyama T. G1 phase arrest induced by Wilms tumor protein WT1 is abrogated by cyclin/CDK complexes.Proc Natl Acad Sci U S A. 1995;92:4517–4521.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Makrigiannakis A, Amin K, Coukos G, Tilly JL, Coutifaris C. Regulated expression and potential roles of p53 and Wilms’ tumor suppressor gene (WT1) during follicular development in the human ovary.J Clin Endocrinol Metab. 2000;85:449–459.

    PubMed  CAS  Google Scholar 

  9. Makrigiannakis A, Coukos G, Mantani A, et al. Expression of Wilms’ tumor suppressor gene (WT1) in human endometrium: regulation through decidual differentiation.J Clin Endocrinol Metab. 2001;86:5964–5972.

    PubMed  CAS  Google Scholar 

  10. Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ 3rd. Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1.Science. 1992;257:674–678.

    Article  PubMed  CAS  Google Scholar 

  11. Werner H, Re GG, Drummond IA, et al. Increased expression of the insulin-like growth factor I receptor gene, IGF1R, in Wilms tumor is correlated with modulation of IGF1R promoter activity by the WT1 Wilms tumor gene product.Proc Natl Acad Sci U S A. 1993;90:5828–5832.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Gashler AL, Bonthron DT, Madden SL, Rauscher FJ 3rd, Collins T, Sukhatme VP. Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms tumor suppressor WT1.Proc Natl Acad Sci U S A. 1992;89:10984–10988.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Wang ZY, Madden SL, Deuel TF, Rauscher FJ 3rd. The Wilms’ tumor gene product, WT1, represses transcription of the plateletderived growth factor A-chain gene.J Biol Chem. 1992;267:21999–22002.

    PubMed  CAS  Google Scholar 

  14. Englert C, Hou X, Maheswaran S, et al. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. ITEMBO J. 1995;14:4662–4675.

    CAS  Google Scholar 

  15. Harrington MA, Konicek B, Song A, Xia XL, Fredericks WJ, Rauscher FJ 3rd. Inhibition of colony-stimulating factor-1 promotor activity by the product of the Wilms’ tumor locus.J Biol Chem. 1993;268:21271–21275.

    PubMed  CAS  Google Scholar 

  16. Dey BR, Sukhatme VP, Roberts AB, Sporn MB, Rauscher FJ 3rd, Kim SJ. Repression of the transforming growth factor-beta 1 gene by the Wilms’ tumor suppressor WT1 gene product.Mol Endocrinol. 1994;8:595–602.

    PubMed  CAS  Google Scholar 

  17. Maurer U, Jehan F, Englert C, et al. The Wilms’ tumor gene product (WT1) modulates the response to 1,25-dihydroxyvitamin D3 by induction of the vitamin D receptor.J Biol Chem. 2001;276:3727–3732.

    Article  PubMed  CAS  Google Scholar 

  18. Lee TH, Pelletier J. Functional characterization of WT1 binding sites within the human vitamin D receptor gene promoter.Physiol Genomics. 2001;7:187–200.

    Article  PubMed  Google Scholar 

  19. Hewitt SM, Hamada S, McDonnell TJ, Rauscher FJ 3rd, Saunders GF. Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1.Cancer Res. 1995;55:5386–5389.

    PubMed  CAS  Google Scholar 

  20. Maheswaran S, Park S, Bernard A, et al. Physical and functional interaction between WT1 and p53 proteins.Proc Natl Acad Sci U S A. 1993;90:5100–5104.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Maheswaran S, Englert C, Bennett P, Heinrich G, Haber DA. The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis.Genes Dev. 1995;9:2143–2156.

    Article  PubMed  CAS  Google Scholar 

  22. Dehbi M, Ghahremani M, Lechner M, Dressler G, Pelletier J. The paired-box transcription factor, PAX2, positively modulates expression of the Wilms’ tumor suppressor gene (WT1).Oncogene. 1996;13:447–453.

    PubMed  CAS  Google Scholar 

  23. McConnell MJ, Cunliffe HE, Chua LJ, Ward TA, Eccles MR. Differential regulation of the human Wilms tumour suppressor gene (WT1) promoter by two isoforms of PAX2.Oncogene. 1997;14:2689–2700.

    Article  PubMed  CAS  Google Scholar 

  24. Dehbi M, Hiscott J, Pelletier J. Activation of the wt1 Wilms’ tumor suppressor gene by NF-kappaB.Oncogene. 1998;16:2033–2039.

    Article  PubMed  CAS  Google Scholar 

  25. Maheswaran S, Englert C, Lee SB, Ezzel RM, Settleman J, Haber DA. E1B 55K sequesters WT1 along with p53 within a cytoplasmic body in adenovirus-transformed kidney cells.Oncogene. 1998;16:2041–2050.

    Article  PubMed  CAS  Google Scholar 

  26. Rupprecht HD, Drummond IA, Madden SL, Rauscher FJ 3rd, Sukhatme VP. The Wilms’ tumor suppressor gene WT1 is negatively autoregulated.J Biol Chem. 1994;269:6198–6206.

    PubMed  CAS  Google Scholar 

  27. Bruening W, Gros P, Sato T, et al. Analysis of the 11p13 Wilms’ tumor suppressor gene (WT1) in ovarian tumors.Cancer Invest. 1993;11:393–399.

    Article  PubMed  CAS  Google Scholar 

  28. Viel A, Giannini F, Capozzi E, et al. Molecular mechanisms possibly affecting WT1 function in human ovarian tumors.Int J Cancer. 1994;57:515–521.

    Article  PubMed  CAS  Google Scholar 

  29. Silberstein GB, Van Horn K, Strickland P, Roberts CT Jr, Daniel CW. Altered expression of the WT1 Wilms tumor suppressor gene in human breast cancer.Proc Natl Acad Sci U S A. 1997;94:8132–8137.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Loeb DM, Evron E, Patel CB, et al. Wilms’ tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation.Cancer Res. 2001;61:921–925.

    PubMed  CAS  Google Scholar 

  31. Rodeck U, Bossler A, Kari C, et al. Expression of the wt1 Wilms’ tumor gene by normal and malignant human melanocytes.Int J Cancer. 1994;59:78–82.

    Article  PubMed  CAS  Google Scholar 

  32. Park S, Schalling M, Bernard A, et al. The Wilms tumour gene WT1 is expressed in murine mesoderm-derived tissues and mutated in a human mesothelioma.Nat Genet. 1993;4:415–420.

    Article  PubMed  CAS  Google Scholar 

  33. Walker C, Rutten F, Yuan X, Pass H, Mew DM, Everitt J. Wilms’ tumor suppressor gene expression in rat and human mesothelioma.Cancer Res. 1994;54:3101–3106.

    PubMed  CAS  Google Scholar 

  34. Langerak AW, Williamson KA, Miyagawa K, Hagemeijer A, Ver-snel MA, Hastie ND. Expression of the Wilms’ tumor gene WT1 in human malignant mesothelioma cell lines and relationship to platelet-derived growth factor A and insulin-like growth factor 2 expression.Genes Chromosomes Cancer. 1995;12:87–96.

    Article  PubMed  CAS  Google Scholar 

  35. Amin KM, Litzky LA, Smythe WR, et al. Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma.Am J Pathol. 1995;146:344–356.

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor.Cancer Res. 1994;54:2837–2840.

    PubMed  CAS  Google Scholar 

  37. Campbell CE, Kuriyan NP, Rackley RR, et al. Constitutive expression of the Wilms tumor suppressor gene (WT1) in renal cell carcinoma.Int J Cancer. 1998;78:182–188.

    Article  PubMed  CAS  Google Scholar 

  38. Oji Y, Ogawa H, Tamaki H, et al. Expression of the Wilms’ tumor gene WT1 in solid tumors and its involvement in tumor cell growth.Jpn J Cancer Res. 1999;90:194–204.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Menssen HD, Bertelmann E, Bartelt S, et al. Wilms’ tumor gene (WT1) expression in lung cancer, colon cancer and glioblastoma cell lines compared to freshly isolated tumor specimens.J Cancer Res Clin Oncol. 2000;126:226–232.

    Article  PubMed  CAS  Google Scholar 

  40. Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor gene (WT1) in human leukemias.Leukemia. 1992;6:405–409.

    PubMed  CAS  Google Scholar 

  41. Inoue K, Sugiyama H, Ogawa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia.Blood. 1994;84:3071–3079.

    PubMed  CAS  Google Scholar 

  42. Brieger J, Weidmann E, Fenchel K, Mitrou PS, Hoelzer D, Bergmann L. The expression of the Wilms’ tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells.Leukemia. 1994;8:2138–2143.

    PubMed  CAS  Google Scholar 

  43. Menssen HD, Renkl HJ, Rodeck U, et al. Presence of Wilms’ tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias.Leukemia. 1995;9:1060–1067.

    PubMed  CAS  Google Scholar 

  44. Tamaki H, Ogawa H, Ohyashiki K, et al. The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes.Leukemia. 1999;13:393–399.

    Article  PubMed  CAS  Google Scholar 

  45. Gaiger A, Reese V, Disis ML, Cheever MA. Immunity to WT1 in the animal model and in patients with acute myeloid leukemia.Blood. 2000;96:1480–1489.

    PubMed  CAS  Google Scholar 

  46. Gaiger A, Schmid D, Heinze G, et al. Detection of the WT1 transcript by RT-PCR in complete remission has no prognostic relevance in de novo acute myeloid leukemia.Leukemia. 1998;12:1886–1894.

    Article  PubMed  CAS  Google Scholar 

  47. Gaiger A, Linnerth B, Mann G, et al. Wilms’ tumour gene (wt1) expression at diagnosis has no prognostic relevance in childhood acute lymphoblastic leukaemia treated by an intensive chemotherapy protocol.Eur J Haematol. 1999;63:86–93.

    Article  PubMed  CAS  Google Scholar 

  48. Brieger J, Weidmann E, Maurer U, Hoelzer D, Mitrou PS, Bergmann L. The Wilms’ tumor gene is frequently expressed in acute myeloblastic leukemias and may provide a marker for residual blast cells detectable by PCR.Ann Oncol. 1995;6:811–816.

    Article  PubMed  CAS  Google Scholar 

  49. Inoue K, Ogawa H, Yamagami T, et al. Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels.Blood. 1996;88:2267–2278.

    PubMed  CAS  Google Scholar 

  50. Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome.Blood. 1997;90:1217–1225.

    PubMed  CAS  Google Scholar 

  51. Kreuzer KA, Saborowski A, Lupberger J, et al. Fluorescent 5′-exonuclease assay for the absolute quantification of Wilms’ tumour gene (WT1) mRNA: implications for monitoring human leukaemias.Br J Haematol. 2001;114:313–318.

    Article  PubMed  CAS  Google Scholar 

  52. Fukahori S. Quantification of WT1 mRNA by competitive NASBA in AML patients.Kurume Med J. 2001;48:129–134.

    Article  PubMed  CAS  Google Scholar 

  53. Menssen HD, Renkl HJ, Rieder H, et al. Distinction of eosinophilic leukaemia from idiopathic hypereosinophilic syndrome by analysis of Wilms’ tumour gene expression.Br J Haematol. 1998;101:325–334.

    Article  PubMed  CAS  Google Scholar 

  54. Menssen HD, Renkl HJ, Rodeck U, Kari C, Schwartz S, Thiel E. Detection by monoclonal antibodies of the Wilms’ tumor (WT1) nuclear protein in patients with acute leukemia.Int J Cancer. 1997;70:518–523.

    Article  PubMed  CAS  Google Scholar 

  55. Englert C, Vidal M, Maheswaran S, et al. Truncated WT1 mutants alter the subnuclear localization of the wild-type protein.Proc Natl Acad Sci U S A. 1995;92:11960–11964.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Larsson SH, Charlieu JP, Miyagawa K, et al. Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing.Cell. 1995;81:391–401.

    Article  PubMed  CAS  Google Scholar 

  57. Menssen HD, Renkl H-J, Entezami M, Thiel E. Wilms’ tumor gene expression in human CD34+ hematopoietic progenitors during fetal development and early growth [letter].Blood. 1997;89:3486–3487.

    PubMed  CAS  Google Scholar 

  58. Maurer U, Weidmann E, Karakas T, Hoelzer D, Bergmann L. Wilms tumor gene (wt1) mRNA is equally expressed in blast cells from acute myeloid leukemia and normal CD34+ progenitors [letter].Blood. 1997;90:4230–4232.

    PubMed  CAS  Google Scholar 

  59. Baird PN, Simmons PJ. Expression of the Wilms’ tumor gene (WT1) in normal hemopoiesis.Exp Hematol. 1997;25:312–320.

    PubMed  CAS  Google Scholar 

  60. Inoue K, Ogawa H, Sonoda Y, et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia.Blood. 1997;89:1405–1412.

    PubMed  CAS  Google Scholar 

  61. Fraizer GC, Patmasiriwat P, Zhang X, Saunders GF. Expression of the tumor suppressor gene WT1 in both human and mouse bone marrow [letter].Blood. 1995;86:4704–4706.

    PubMed  CAS  Google Scholar 

  62. Ellisen LW, Carlesso N, Cheng T, Scadden DT, Haber DA. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. ITEMBO J. 2001;20:1897–1909.

    CAS  Google Scholar 

  63. Hosen N, Sonoda Y, Oji Y, et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells.Br J Haematol. 2002;116:409–420.

    Article  PubMed  CAS  Google Scholar 

  64. Yamagami T, Sugiyama H, Inoue K, et al. Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis.Blood. 1996;87:2878–2884.

    PubMed  CAS  Google Scholar 

  65. Algar EM, Khromykh T, Smith SI, Blackburn DM, Bryson GJ, Smith PJ. A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines.Oncogene. 1996;12:1005–1014.

    PubMed  CAS  Google Scholar 

  66. Svedberg H, Chylicki K, Baldetorp B, Rauscher FJ 3rd, Gullberg U. Constitutive expression of the Wilms’ tumor gene (WT1) in the leukemic cell line U937 blocks parts of the differentiation program.Oncogene. 1998;16:925–932.

    Article  PubMed  CAS  Google Scholar 

  67. Svedberg H, Chylicki K, Gullberg U. Downregulation of Wilms’ tumor gene (WT1) is not a prerequisite for erythroid or megakaryocytic differentiation of the leukemic cell line K562.Exp Hematol. 1999;27:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  68. Deuel TF, Guan LS, Wang ZY. Wilms’ tumor gene product WT1 arrests macrophage differentiation of HL-60 cells through its zinc-finger domain.Biochem Biophys Res Commun. 1999;254:192–196.

    Article  PubMed  CAS  Google Scholar 

  69. Gao L, Bellantuono I, Elsasser A, et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1.Blood. 2000;95:2198–2203.

    PubMed  CAS  Google Scholar 

  70. Gaiger A, Carter L, Greinix H, et al. WT1-specific serum antibodies in patients with leukemia.Clin Cancer Res. 2001;7:761s-765s.

    PubMed  CAS  Google Scholar 

  71. Ohminami H, Yasukawa M, Fujita S. HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide.Blood. 2000;95:286–293.

    PubMed  CAS  Google Scholar 

  72. Oka Y, Elisseeva OA, Tsuboi A, et al. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product.Immunogenetics. 2000;51:99–107.

    Article  PubMed  CAS  Google Scholar 

  73. Tsuboi A, Oka Y, Ogawa H, et al. Cytotoxic T-lymphocyte responses elicited to Wilms’ tumor gene WT1 product by DNA vaccination.J Clin Immunol. 2000;20:195–202.

    Article  PubMed  CAS  Google Scholar 

  74. Azuma T, Makita M, Ninomiya K, Fujita S, Harada M, Yasukawa M. Identification of a novel WT1-derived peptide which induces human leucocyte antigen-A24-restricted anti-leukaemia cytotoxic T lymphocytes.Br J Haematol. 2002;116:601–603.

    Article  PubMed  CAS  Google Scholar 

  75. Hubinger G, Schmid M, Linortner S, Manegold A, Bergmann L, Maurer U. Ribozyme-mediated cleavage of wt1 transcripts suppresses growth of leukemia cells.Exp Hematol. 2001;29:1226–1235.

    Article  PubMed  CAS  Google Scholar 

  76. Campana D, Pui C-H. Detection of minimal residual disease in acute leukemia: Methodologic advances and clinical significance.Blood. 1995;85:1416–1434.

    PubMed  CAS  Google Scholar 

  77. Schmid D, Heinze G, Linnerth B, et al. Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia.Leukemia. 1997;11:639–643.

    Article  PubMed  CAS  Google Scholar 

  78. Siehl JM, Thiel E, Leben R, Reinwald M, Knauf W, Menssen HD. Quantitative real-time RT-PCR detects elevated Wilms tumor gene (WT1) expression in autologous blood stem cell preparations (PBSCs) from acute myeloid leukemia (AML) patients indicating contamination with leukemic blasts.Bone Marrow Transplant. 2002;29:379–381.

    Article  PubMed  CAS  Google Scholar 

  79. Sakatani T, Shimazaki C, Hirai H, et al. Early relapse after high-dose chemotherapy rescued by tumor-free autologous peripheral blood stem cells in acute lymphoblastic leukemia: importance of monitoring for WT1-mRNA quantitatively.Leuk Lymphoma. 2001;42:225–229.

    Article  PubMed  CAS  Google Scholar 

  80. Bain BJ. Eosinophilic leukaemias and the idiopathic hypereosinophilic syndrome.Br J Haematol. 1996;95:2–9.

    CAS  PubMed  Google Scholar 

  81. Parreira L, Tavares de Castro J, Hibbin JA, et al. Chromosome and cell culture studies in eosinophilic leukaemia.Br J Haematol. 1986;62:659–669.

    Article  PubMed  CAS  Google Scholar 

  82. Weide R, Rieder H, Mehraein Y, et al. Chronic eosinophilic leukaemia (CEL): a distinct myeloproliferative disease.Br J Haematol. 1997;96:117–123.

    Article  PubMed  CAS  Google Scholar 

  83. Chusid MJ, Dale DC, West BC, Wolff SM. The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature.Medicine (Baltimore). 1975;54:1–27.

    Article  CAS  Google Scholar 

  84. Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome.Blood. 1994;83:2759–2779.

    CAS  PubMed  Google Scholar 

  85. Raghavachar A, Fleischer S, Frickhofen N, Heimpel H, Fleischer B. T lymphocyte control of human eosinophilic granulopoiesis: clonal analysis in an idiopathic hypereosinophilic syndrome.J Immunol. 1987;139:3753–3758.

    PubMed  CAS  Google Scholar 

  86. Owen WF, Rothenberg ME, Petersen J, et al. Interleukin 5 and phenotypically altered eosinophils in the blood of patients with the idiopathic hypereosinophilic syndrome.J Exp Med. 1989;170:343–348.

    Article  PubMed  CAS  Google Scholar 

  87. Menssen HD, Schmidt A, Bartelt S, et al. Analysis of Wilms tumor gene (WT1) expression in patients with acute leukemia with special reference to the differential diagnosis between eosinophilic leukemia and idiopathic hypereosinophilic syndromes.Leuk Lymphoma. 2000;36:285–294.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans D. Menssen.

About this article

Cite this article

Menssen, H.D., Siehl, J.M. & Thiel, E. Wilms Tumor Gene (WT1) Expression as a Panleukemic Marker. Int J Hematol 76, 103–109 (2002). https://doi.org/10.1007/BF02982571

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02982571

Key words

Navigation