Skip to main content
Log in

Reabsorption of neutral amino acids mediated by amino acid transporter LAT2 and TAT1 in the basolateral membrane of proximal tubule

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In order to understand the renal reabsorption mechanism of neutral amino acids via amino acid transporters, we have isolated human L-type amino acid transporter 2 (hLAT2) and human T-type amino acid transporter 1 (hTAT1) in human, then, we have examined and compared the gene structures, the functional characterizations and the localization in human kidney. Northern blot analysis showed that hLAT2 mRNA was expressed at high levels in the heart, brain, placenta, kidney, spleen, prostate, testis, ovary, lymph node and the fetal liver. The hTAT1 mRNA was detected at high levels in the heart, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus and prostate. Immunohistochemical analysis on the human kidney revealed that the hLAT2 and hTAT1 proteins coexist in the basolateral membrane of the renal proximal tubules. The hLAT2 transports all neutral amino acids and hTAT1 transports aromatic amino acids. The basolateral location of the hLAT2 and hTAT1 proteins in the renal proximal tubule as well as the amino acid transport activity of hLAT2 and hTAT1 suggests that these transporters contribute to the renal reabsorption of neutral and aromatic amino acids in the basolateral domain of epithelial proximal tubule cells, respectively. Therefore, LAT2 and TAT1 play essential roles in the reabsorption of neutral amino acids from the epithelial cells to the blood stream in the kidney. Because LAT2 and TAT1 are essential to the efficient absorption of neutral amino acids from the kidney, their defects might be involved in the pathogenesis of disorders caused by a disruption in amino acid absorption such as blue diaper syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, A., Cardenas, J. M., Houghten, R. A., Dixon, F. J., and Theofilopoulos, A. N., Antibodies of predetermined specificity against chemically synthesized peptides of human inter-leukin 2.Proc. Natl. Acad. Sci. U.S.A., 81,2176–2180 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Blondeau, J. P., Beslin, A., Chantoux, F., and Francon, J., Triiodothyronine is a high-affinity inhibitor of amino acid transport system L1 in cultured astrocytes.J. Neurochem., 60,1407–1413(1993).

    Article  PubMed  CAS  Google Scholar 

  • Broer, A., Klingel, K., Kowalczuk, S., Rasko, J. E., Cavanaugh, J., and Broer, S., Molecular cloning of mouse amino acid transport system B°, a neutral amino acid transporter related to Hartnup disorder.J. Biol. Chem., 279,24467–24476 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chillaron, J., Estevez, R., Mora, C, Wagner, C. A., Suessbrich, H., Lang, F., Gelpi, J. L., Testar, X., Busch, A. E., Zorzano, A., and Palacin, M., Obligatory amino acid exchangevia systems b°,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids.J. Biol. Chem., 271,17761–17770 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Christensen, H. N., Role of amino acid transport and countertransport in nutrition and metabolism.Physiol. Rev., 70, 43–77(1990).

    PubMed  CAS  Google Scholar 

  • Goldenberg, G. J., Lam, H. Y., Begleiter, A., Active carrier-mediated transport of melphalan by two separate amino acid transport systems in LPC-1 plasmacytoma cellsin vitro.J. Biol. Chem., 254,1057–1064 (1979).

    PubMed  CAS  Google Scholar 

  • Gomes, P. and Soares-da-Silva, P., L-DOPA transport properties in an immortalized cell line of rat capillary cerebral endothelial cells, RBE 4.Brain Res., 829,143–150 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Heng, H. H. Q., Squire, J., and Tsui, L. -C., High resolution mapping of mammalian genes byin situ hybridization to free chromosome.Proc. Natl. Acad. Sci. U.S.A., 89, 9509–9513 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Heng, H. H. Q. and Tsui, L.-C., Modes of DAPI banding and simultaneouslyin situ hybridization.Chromosoma, 102,325–332(1993).

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, T., Boon-Chieng, S., and Mitaku, S., SOSUI: classification and secondary structure prediction system for membrane proteins.Bioinformatics, 14,378–379 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hisano, S., Haga, H., Miyamoto, K., Takeda, E., and Fukui, Y., The basic amino acid transporter (rBAT)-like immunoreactivity in paraventricular and supraoptic magnocellular neurons of the rat hypothalamus.Brain Res., 710, 299–302 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Kanai, Y. and Hediger, M. A., Primary structure and functional characterization of a high-affinity glutamate transporter.Nature, 360,467–471 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., and Endou, H., Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98).J. Biol. Chem., 273, 23629–23632(1998).

    Article  PubMed  CAS  Google Scholar 

  • Kanai, Y. and Endou, H., Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance.Curr. Drug Metab., 2,339–354 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. K., Kanai, Y, Chairoungdua, A., Matsuo, H., Cha, S. H., and Endou, H., Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters.J. Biol. Chem., 276, 17221–17228(2001).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. K., Kanai, Y., Choi, H. W., Tangtrongsup, S., Chairoungdua, A., Babu, E., Tachampa, K., Anzai, N., Iribe, Y., and Endou, H., Characterization of the system L amino acid transporter in T24 human bladder carcinoma cells.Biochim. Biophys. Acta, 1565,112–121 (2002a).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. K., Kanai, Y., Matsuo, H., Kim, J. Y., Chairoungdua, A., Kobayashi, Y., Enomoto, A., Cha, S. H., Goya, T., and Endou, H., The human T-type amino acid transporter-1: characterization, gene organization, and chromosomal location.Genomics, 79, 95–103 (2002b).

    Article  PubMed  CAS  Google Scholar 

  • Lakshmanan, M., Goncalves, E., Lessly, G., Foti, D., and Robbins, J., The transport of thyroxine into mouse neuroblastoma cells, NB41A3: the effect of L-system amino acids.Endocrinology, 126,3245–3250 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. H., Chae, K. S., Nan, J. X., and Sohn, D. H., The increment of purine specific sodium nucleoside cotransporter mRNA in experimental fibrotic liver induced by bile duct ligation and scission.Arch. Pharm. Res., 23,613–619 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. H., Chae, K. S., and Sohn, D. H., Identification of expressed sequence tags of genes expressed highly in the activated hepatic stellate cell.Arch. Pharm. Res., 27, 422–428 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Mannion, B. A., Kolesnikova, T. V., Lin, S. -H., Thompson, N. L., and Hemler, M. E., The light chain of CD98 is identified as E16/TA1 protein.J. Biol. Chem., 273,33127–33129 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi, K., Cha, S. H., Chairoungdua, A., Kim, D. K., Shigeta, Y., Matsuo, H., Fukushima, J., Awa, Y., Akakura, K., Goya, T., Ito, H., Endou, H., and Kanai, Y., Human cystinuria-related transporter: localization and functional characterization.Kidney Int., 59,1821–1833 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, E., Sato, M., Yang, H., Miyagawa, F., Harasaki, M., Tomita, K., Matsuoka, S., Noma, A., Iwai, K., and Minato, N., 4F2 (CD98) heavy chain is associated covalently with an amino acid transporter and controls intracellular trafficking and membrane topology of 4F2 heterodimer.J. Biol. Chem., 274,3009–3016(1999).

    Article  PubMed  CAS  Google Scholar 

  • Nii, T., Segawa, H., Taketani, Y., Tani, Y., Ohkido, M., Kishida, S., Ito, M., Endou, H., Kanai, Y., Takeda, E., and Miyamoto, K., Molecular events involved in up-regulating human Na+-independent neutral amino acid transporter LAT1 during T-cell activation.Biochem. J., 358,693–704 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Oxender, D. L. and Christensen, H. N., Evidence for two types of mediation of neutral amino acid transport in Ehrlich cells.Nature, 197,765–767 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Palacin, M., Estevez, R., Bertran, J., and Zorzano, A., Molecular biology of mammalian plasma membrane amino acid transporters.Physiol. Rev., 78, 969–1054 (1998).

    PubMed  CAS  Google Scholar 

  • Peghini, P., Janzen, J., and Stoffel, W., Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration.EMBOJ., 16, 3822–3832 (1997).

    Article  CAS  Google Scholar 

  • Pfeiffer, R., Spindler, B., Loffing, J., Skelly, P. J., Shoemaker, C. B., and Verrey, F., Functional heterodimeric amino acid transporters lacking cysteine residues involved in disulfide bond.FEBS Lett., 439,157–162 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Pineda, M., Fernandez, E., Torrents, D., Estevez, R., Lopez, C., Camps, M., Lloberas, J., Zorzano, A., and Palacin, M., Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids.J. Biol. Chem., 274, 19738–19744 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Prasad, P. D., Wang, H., Huang, H., Kekuda, R., Rajan, D. P., Leibach, F. H., and Ganapathy, V., Human LAT1, a subunit of system L amino acid transporter: molecular cloning and transport function.Biochem. Biophys. Res. Commun., 255, 283–288(1999).

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, R., Young, J. D., and Ellory, J. C., L-tryptophan transport in humanred blood cells.Biochim. Biophys. Acta, 598,375–384(1980).

    Article  PubMed  CAS  Google Scholar 

  • Rossier, G., Meier, C., Bauch, C., Summa, V., Sordat, B., Verrey, F., and Kuhn, L. C., LAT2, a new basolateral 4F2hc/ CD98-associated amino acid transporter of kidney and intestine.J. Biol. Chem., 274, 34948–34954 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Sang, J., Lim, Y. -P., Panzia, M., Finch, P., and Thompson, N. L., TA1, a highly conserved oncofetal complementary DNA from rat hepatoma, encodes an integral membrane protein associated with liver development, carcinogenesis, and cell activation.Cancer Res., 55,1152–1159 (1995).

    PubMed  CAS  Google Scholar 

  • Segawa, H., Fukasawa, Y., Miyamoto, K., Takeda, E., Endou, H., and Kanai, Y., Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity.J. Biol. Chem., 274, 19745–19751 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Shayakul, C., Kanai, Y., Lee, W. S., Brown, D., Rothstein, J. D., and Hediger, M. A., Localization of the high-affinity glutamate transporter EAAC1 in rat kidney.Am. J. Physiol., 273, F1023-F1029 (1997).

    PubMed  CAS  Google Scholar 

  • Silbernagl, S., Renal transport of amino acids.Klin. Wochenschr., 57,1009–1019, (1979).

    Article  PubMed  CAS  Google Scholar 

  • Stevens, B. R., Kaunitz, J. D., and Wright, E. M., Intestinal transport of amino acids and sugars: advances using membrane vesicles.Anna Rev. Physiol., 46,417–433 (1984).

    Article  CAS  Google Scholar 

  • Su, T. Z., Lunney, E., Campbell, G., and Oxender, D. L., Transport of gabapentin, a gamma-amino acid drug, by system I alpha-amino acid transporters: a comparative study in astrocytes, synaptosomes and CHO cells.J. Neurochem., 64,2125–2131 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Utsunomiya-Tate, N., Endou, H., and Kanai, Y., Cloning and functional characterization of a system ASC-like Independent neutral amino acid transporter.J. Biol. Chem., 271,14883–14890(1996).

    Article  PubMed  CAS  Google Scholar 

  • Utsunomiya-Tate, N., Endou, H., and Kanai, Y., Tissue specific variants of glutamate transporter GLT-1.FEBS Lett., 416, 312–316(1997).

    Article  PubMed  CAS  Google Scholar 

  • van Winkle, L. J., Mann, D. E., Campione, A. L., and Farrington, B. H., Transport of benzenoid amino acids by system T and four broad scope systems in preimplantation mouse conceptuses.Biochim. Biophys. Acta, 1027,268–277 (1990).

    Article  PubMed  Google Scholar 

  • Wolf, D. A., Wang, S., Panzia, M. A., Bassily, N. H., and Thompson, N. L., Expression of a highly conserved oncofetal gene, TA1/E16, in human colon carcinoma and other primary cancers: homology to Schistosoma mansoni amino acid permease and Caenorhabditis elegans gene products.Cancer Res., 56, 5012–5022 (1996).

    PubMed  CAS  Google Scholar 

  • Yanagida, O., Kanai, Y., Chairoungdua, A., Kim, D. K., Segawa, H., Nii, T., Cha, S. H., Matsuo, H., Fukushima, J., Fukasawa, Y., Tani, Y., Taketani, Y., Uchino, H., Kim, J. Y., Inatomi, J., Okayasu, I., Miyamoto, K., Takeda, E., Goya, T, and Endou, H., Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines.Biochim. Biophys. Acta, 1514, 291–302 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Yoon, J. H., Kim, Y. B., Kim, M. S., Park, J. C., Kook, J. K., Jung, H. M., Kim, S. G., Yoo, H., Ko, Y. M., Lee, S. H., Kim, B. Y., Chun, H. S., Kanai, Y., Endou, H., and Kim, D. K., Expression and functional characterization of the system L amino acid transporter in KB human oral epidermoid carcinoma cells.Cancer Lett., 205,215–226 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do Kyung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S.Y., Kim, JK., Kim, I.J. et al. Reabsorption of neutral amino acids mediated by amino acid transporter LAT2 and TAT1 in the basolateral membrane of proximal tubule. Arch Pharm Res 28, 421–432 (2005). https://doi.org/10.1007/BF02977671

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02977671

Key words

Navigation