Skip to main content
Log in

Localization of bismuth radiotracer in rat kidney following exposure to bismuth

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It has been proposed that alpha emitting2l2Bi (t1/2 = 60 min) coupled to tumor-specific antibodies may be a useful radiotherapeutic agent. However, since Bi can accumulate in the kidney, it is necessary to characterize the factors influencing localization of Bi within this tissue in order to evaluate the potential for radiation damage to the renal system. In this study, the localization of Bi radiotracers was determined in kidneys of rats previously exposed and not exposed to μmole quantities of Bi. Following repeated injection of Bi (4 × 14 μmols (3 mg Bi)/kg bw) the element accumulated mainly in the kidney followed by liver, spleen, pancreas, bone, and brain. Kidney copper and liver zinc concentrations were higher in Bi-exposed rats than in non-exposed rats. Within the cytosol, in Bi-exposed rats, Bi radiotracer in the kidney was associated with a metallothionein-like protein (Mt). In contrast, non-exposed rats contained no detectable metallothionein-like proteins in the kidney and the Bi tracer was associated with the hemoglobin fraction of the cell. Thus, when Bi is administered in tracer quantities such as that incorporated for use as a radiopharmaceutical, no induction of, and association with, metallothionein-like proteins should occur. These results suggest that the potential nephrotic effects of212Bi will be influenced by the individual’s previous exposure to Bi-containing drugs, or other metallothioneininducing insults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. O. Bloomer, W. H. McLaughlin, R. D. Neirinckx, S. J. Gordon, P. R. Ruth, and S. P. Wolf,Science 212, 340 (1981).

    Article  PubMed  CAS  Google Scholar 

  2. A. T. M. Vaughan, W. J. Bateman, and J. Cowan,Int. J. Nucl. Med. Biol. 9, 167 (1982).

    Article  PubMed  CAS  Google Scholar 

  3. R. W. Kozak, R. W. Atcher, O. A. Gansow, R. M. Friedman, J. J. Hines, and T. W. Waldman,Proc. Natl. Acad. Sci. USA 83, 474 (1986).

    Article  PubMed  CAS  Google Scholar 

  4. G. Wunderlich, E. Henke, B. Iwe, and W. G. Franke,Nucl. Med. Commun. 7, 211 (1986).

    Article  PubMed  CAS  Google Scholar 

  5. S. Zidenberg-Cherr, N. J. Parks, and C. L. Keen,Radiat. Res. 111, 119 (1987).

    Article  PubMed  CAS  Google Scholar 

  6. R. Vienet, P. Bouvet, and M. Istin,Int. J. Appl. Radiat, Isot. 34, 747 (1983).

    Article  CAS  Google Scholar 

  7. G. A. Russ, R. E. Bigler, R. S. Tilbury, H. Q. Woodard, and J. S. Laughlin,Radiat. Res. 63, 443 (1975).

    Article  PubMed  CAS  Google Scholar 

  8. J. A. Szymanska, E. M. Mogilnicka, and B. W. Kaszper,Biochem. Pharmacol. 26, 257 (1977).

    Article  PubMed  CAS  Google Scholar 

  9. R. Urizur and R. L. Vernier,J. Am. Med. Assoc. 198, 187 (1966).

    Article  Google Scholar 

  10. A. M. Pappenheimer and E. H. Maechling,Am. J. Pathol. 10, 577 (1934).

    CAS  PubMed  Google Scholar 

  11. J. A. Szymanska, A. J. Zelazowski, and S. Kawiorksi,Clin. Toxicol. 18, 1291 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. M. A. Basinger, M. M. Jones, and S. A. McCroskey,J. Toxicol. Clin. Toxicol. 20, 159 (1983).

    PubMed  CAS  Google Scholar 

  13. M. S. Clegg, C. L. Keen, B. Lonnerdal, and L. S. Hurley,Biol. Trace Element Res. 3, 107 (1981).

    CAS  Google Scholar 

  14. K. C. Thompson and D. R. Thompson,Analyst 99, 595 (1974).

    Article  CAS  Google Scholar 

  15. I. Bremner,J. Nutr. 117, 19 (1987).

    PubMed  CAS  Google Scholar 

  16. J. K. Piotrowski and J. A. Szymanska,J. Toxicol. Environ. Hlth. 1, 991 (1976).

    Article  CAS  Google Scholar 

  17. J. A. Szymanska and J. K. Piotrowski,Biochem. Pharmacol. 29, 2913 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. D. Chaleil, F. Lefevre, P. Allain, and G. J. Martin,J. Inorg. Biochem. 15, 213 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. M. D. Stonard and M. Webb,Chem. Biol. Interact. 15, 349 (1976).

    Article  PubMed  CAS  Google Scholar 

  20. D. R. Winge, R. Premakumar, and K. V. Rajagopalan,Arch. Biochem. Biophys. 170, 242 (1975).

    Article  PubMed  CAS  Google Scholar 

  21. J. A. Szymanska and A. J. Zelazowski,Environ. Res. 19, 121 (1979).

    Article  PubMed  CAS  Google Scholar 

  22. R. J. Cousins,Physiol. Rev. 65, 238 (1985).

    PubMed  CAS  Google Scholar 

  23. S. H. Oh, J.-T. Deagen, P. D. Whanger, and P. H. Weswig,Am. J. Physiol. 234, 282 (1978).

    Google Scholar 

  24. R. J. Cousins, M. A. Dunn, A. Leinart, K. Yedinak, and R. DiSilvestro,Am. J. Physioi. 251, 688 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zidenberg-Cherr, S., Clegq, M.S., Parks, M.J. et al. Localization of bismuth radiotracer in rat kidney following exposure to bismuth. Biol Trace Elem Res 19, 185–194 (1989). https://doi.org/10.1007/BF02924295

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02924295

Index Entries

Navigation