Skip to main content
Log in

Determination of 2-fluoro-2-deoxy-d-glucose uptake and ATP level for evaluating drug effects in neoplastic cells

  • Published:
Research in Experimental Medicine

Summary

The glucose analogue 2-fluoro-2-deoxy-d-glucose (FDG) was used to study chemosensitivity of two human ovarian cancer cell lines and of murine L1210 cells. Cell viability was determined by measuring intracellular adenosine triphosphate (ATP) with a bioluminescence method, which has been shown to correlate closely with trypan blue, stem cell, and [3H]TdR assays. All three cell lines were sensitive to cytostatic drugs, which exerted a parallel decrease in the intracellular FDG and ATP levels. The two measures correlated positively (r=0.66,P<0.001), indicating that FDG uptake is closely linked with ATP production. Relatively low hexokinase (HK)-to-glucose 6-phosphatase (HK/G6-Pase) ratios were measured, which suggests that the metabolic trapping of FDG 6-phosphate within the cytosol is incomplete. Apparently, these cell lines may not depend exclusively on glycolysis for their energy requirement. We conclude that cell killing caused by cytostatic drugs is associated with a decreased ATP content and FDG uptake. This indicates that not only ATP but also FDG may be used to study drug effects in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abe Y, Matsuzawa T, Fujiwara T, Fukuda H, Itoh M, Yamada K, Yamaguchi K, Sato T, Ido T (1986) Assessment of radiotherapeutic effects on experimental tumors using18F-2-fluoro-2-deoxy-d-glucose. Eur J Nucl Med 12:325–328

    Article  PubMed  CAS  Google Scholar 

  2. Baginski ES, Foà PP, Zak B (1974) Glucose-6-phosphatase. In: Bergmayer HU (ed) Methods of enzymatic analysis. Verlag Chemie, New York London, pp 876–880

    Google Scholar 

  3. Bradner WT (1978) New prescreens for antitumor antibiotics. Antibiot Chemother 23:4–11

    PubMed  CAS  Google Scholar 

  4. Burk D, Woods M, Hunter J (1967) On the significance of glucolysis for cancer growth, with special reference to Morris rat hepatomas. J Natl Cancer Inst 38:839–863

    PubMed  CAS  Google Scholar 

  5. Delicado E, Torres M, Miras-Portugal MT (1986) Effects of insulin on glucose transporters and metabolic patterns in Harding-Passey melanoma cells. Cancer Res 46:3762–3767

    PubMed  CAS  Google Scholar 

  6. DiChiro G, Oldfield E, Wright DC, De Michele D, Katz DA, Patronas NJ, Doppman JL, Larson SM, Ho M, Kufta CV (1989) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies. AJR 150:189–197

    Google Scholar 

  7. Engelholm SA, Spang-Thomsen M, Vindelov LL (1983) A short-term in vitro test for tumour sensitivity to adriamycin based on flow cytometric DNA analysis. Br J Cancer 47:497–502

    PubMed  CAS  Google Scholar 

  8. Friedman HS, Schold SC Jr, Djang WT, Kurtzberg J, Longee DC, Halperin EC, Falletta JM, Coleman RE, Oakes WJ (1989) Criteria for termination of phase II chemotherapy for patients with progressive or recurrent brain tumor. Neurology 39:62–66

    PubMed  CAS  Google Scholar 

  9. Gallagher BM, Fowler JS, Gutterson NI, McGregor RR, Wan CN, Wolf AP (1979) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of (18F) 2-deoxyglucose. J Nucl Med 19:1154–1161

    Google Scholar 

  10. Heinonen JK, Lahti RJ (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal Biochem 113:313–317

    Article  PubMed  CAS  Google Scholar 

  11. Kallio S, Kangas L, Blanco G, Johansson R, Karjalainen A, Perilä M, Piippo I, Sundquist H, Södervall M, Toivola R (1986) A new triphenylethylene compound. Fc-1157a: I. Hormonal effects. Cancer Chemother Pharmacol 17:103–108

    Article  PubMed  CAS  Google Scholar 

  12. Kangas L, Grönroos M, Nieminen A-L (1984) Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med Biol 62:338–343

    PubMed  CAS  Google Scholar 

  13. Kangas L, Nieminen A-L, Blanco G, Grönroos M, Kallio S, Karjalainen A, Perilä M, Södervall M, Toivola R (1986) A new triphenylethylene compound, Fc-1157a: II. Antitumor effects. Cancer Chemother Pharmacol 17:109–113

    Article  PubMed  CAS  Google Scholar 

  14. Kangas L, Paul R, Kellokumpu-Lehtinen P, Harju-Jeanty R, Tuominen J (1989) Rats with mammary cancer treated with toremifene and interferon: morphometry and needle aspiration biopsy for determination of ATP and14C-fluorodeoxyglucose content. Res Exp Med 189:113–119

    Article  CAS  Google Scholar 

  15. Kurnick NB, Coats HA, DeJesus I (1983) A new method for in vitro chemosensitivity assay: inhibition of metabolic CO2 production. Biomed Pharmacol 37:351–353

    CAS  Google Scholar 

  16. Kuzmits R, Rumpold H, Müller MM, Schopf G (1986) The use of bioluminescence to evaluate the influence of chemotherapeutic drugs on ATP-levels of malignant cell lines. J Clin Chem Clin Biochem 24:293–298

    PubMed  CAS  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  18. Lyon RC, Cohen JS, Faustino PJ, Megnin F, Myers CE (1988) Glucose metabolism in drug-sensitive and drug-resistant human breast cancer cells monitored by magnetic resonance spectroscopy. Cancer Res 48:870–877

    PubMed  CAS  Google Scholar 

  19. Maehara Y, Kusumoto H, Anai H, Kusumoto T, Sugimachi K (1987) Human tumor tissues have higher ATP contents than normal tissues (letter). Clin Chim Acta 169:341–343

    Article  PubMed  CAS  Google Scholar 

  20. Minn H, Soini I (1989) [18F] Fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer. Eur J Nucl Med 15:61–66

    Article  PubMed  CAS  Google Scholar 

  21. Morgan MJ, Faik P (1981) Carbohydrate metabolism in cultured animal cells. Biosci Rep 1:669–686

    Article  PubMed  CAS  Google Scholar 

  22. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in human with (F-18) 2-fluoro-2-deoxy-d-glucose: validation of a method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  23. Pouyssegur JV, Frachi A, Salomon JG, Silvestre P (1980) Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis. Proc Natl Acad Sci 77:2698–2701

    Article  PubMed  CAS  Google Scholar 

  24. Santti RS, Villee CA (1971) Hormonal control of hexokinase in male sex accessory glands. Endocrinology 89:1162–1170

    Article  PubMed  CAS  Google Scholar 

  25. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedures, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi H, Yamaguchi K, Wakui A, Maeda S, Kong Yang P, Ito M, Matsugawa T, Fukuda H, Ido T (1986) New approach to clinical evaluation of cancer chemotherapy using positron emission tomography with18FDG (2-deoxy-2-[18F] fluoro-d-glucose). Sci Rep Res Inst Tohoku Univ 33:38–43

    CAS  Google Scholar 

  27. Valavaara R, Pyrhönen S, Heikkinen M, Rissanen P, Blanco G, Thölix E, Nordman E, Taskinen P, Holsti L, Hajba A (1988) Toremifene, a new antiestrogenic compound, for treatment of advanced breast cancer. Phase II study. Eur J Cancer Clin Oncol 24:785–790

    Article  PubMed  CAS  Google Scholar 

  28. Weber G, Cantero A (1955) Glucose-6-phosphatase activity in normal, precancerous, and neoplastic tissues. Cancer Res 15:105–108

    PubMed  CAS  Google Scholar 

  29. Weber G, Morris H (1963) Comparative biochemistry of hepatomas: III. Carbohydrate enzymes in liver tumors of different growth rates. Cancer Res 23:987–994

    PubMed  CAS  Google Scholar 

  30. Weinhouse S (1976) The Warburg hypothesis fifty years later (Guest editorial). Z Krebsforsch 87:115–126

    Article  CAS  Google Scholar 

  31. Weisenthal LM, Lippman ME (1985) Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat Rep 69:615–632

    PubMed  CAS  Google Scholar 

  32. Wilson AJ, Baum M, Singh L, Kangas L (1987) Antioestrogen therapy of pure mesenchymal tumour. Lancet I:508

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minn, H., Kangas, L., Knuutila, V. et al. Determination of 2-fluoro-2-deoxy-d-glucose uptake and ATP level for evaluating drug effects in neoplastic cells. Res. Exp. Med. 191, 27–35 (1991). https://doi.org/10.1007/BF02576657

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576657

Key words

Navigation