Skip to main content
Log in

Physiologically based pharmacokinetic modeling as a tool for drug development

  • Perspectives in Pharmacokinetics
  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Since the pioneering work of Haggard and Teorell in the first half of the 20th century, and of Bischoff and Dedrick in the late 1960s, physiologically based pharmacokinetic (PBPK) modeling has gone through cycles of general acceptance, and of healthy skepticism. Recently, however, the trend in the pharmaceuticals industry has been away from PBPK models. This is understandable when one considers the time and effort necessary to develop, test, and implement a typical PBPK model, and the fact that in the present-day environment for drug development, efficacy and safety must be demonstrated and drugs brought to market more rapidly. Although there are many modeling tools available to the pharmacokineticist today, many of which are preferable to PBPK modeling in most circumstances, there are several situations in which PBPK modeling provides distinct benefits that outweigh the drawbacks of increased time and effort for implementation. In this Commentary, we draw on our experience with this modeling technique in an industry setting to provide guidelines on when PBPK modeling techniques could be applied in an industrial setting to satisfy the needs of regulatory customers. We hope these guidelines will assist researchers in deciding when to apply PBPK modeling techniques. It is our contention that PBPK modeling should be viewed as one of many modeling tools for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. S. Hussain, R. D. Johnson, N. N. Vachharajani, and W. A. Ritschel. Feasibility of developing a neural network for prediction of human pharmacokinetic parameters from animal data.Pharm. Res. 10:466–469 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. P. Veng-Pedersen and N. B. Modi. Neural networks in pharmacodynamic modeling. Is current modeling practice of complex kinetic systems at a dead end?J. Pharmacokin. Biopharm. 20:397–412 (1992).

    Article  CAS  Google Scholar 

  3. A. S. Hussain, X. Yu, and R. D. Johnson. Application of neural computing in pharmaceutical product development.Pharm. Res. 8:1248–1252 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. R. S. Markin, W. J. Murray, and H. Boxenbaum. Quantitative structure-activity study on human pharmacokinetic parameters of benzodiazepines using the graph theoretical approach.Pharm. Res. 5:201–208 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. E. Gifford, M. Johnson, and C.-C. Tsai. A graph-theoretic approach to modeling metabolic pathways.J. Comp. Aid. Mol. Dis. 5:(1991).

  6. P. O. Droz, M. M. Wu, W. G. Cumberland, and M. Berode. Variability in biological monitoring of solvent exposure. I. Development of a population physiological model.Br. J. Ind. Med. 46:447–460 (1989).

    CAS  PubMed Central  PubMed  Google Scholar 

  7. T. M. Ludden, S. R. B. Allerheiligen, and R. F. Burk. Application of population analysis to physiological pharmacokinetics.J. Pharmacokin. Biopharm. 19:101S-113S (1991).

    Article  Google Scholar 

  8. D. R. Mattison and F. R. Jelovsek. Pharmacokinetics and expert systems as aids for risk assessment in reproductive toxicology.Environ. Health Perspect. 76:107–119 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. L. P. Balant, H. Roseboom, and U. M. Gundert-Remy. Pharmacokinetic criteria for drug research and development. In B. Testa (ed.),Advances in Drug Research, Academic Press, London, 1990, pp. 1–137.

    Google Scholar 

  10. R. M. J. Ings. Interspecies scaling and comparisons in drug development and toxicokinetics.Xenobiotica 20:1201–1231 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. W. R. Chappel and J. Mordenti. Extrapolation of toxicological and pharmacological data from animals to humans. In B. Testa (ed.),Advances in Drug Research, Academic Press, New York, 1991, pp. 1–116.

    Google Scholar 

  12. W. A. Colburn. Physiologic pharmacokinetic modeling.J. Clin. Pharmacol. 28:673–677 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. W. A. Ritschel and P. S. Banaerjee. Physiological pharmacokinetic models: Principles, applications, limitations, and outlook.Meth. Find. Exp. Clin. Pharmacol. 8:603–614 (1986).

    CAS  Google Scholar 

  14. L. E. Gerlowski and R. K. Jain. Physiologically based pharmacokinetic modeling: Principles and applications.J. Pharm. Sci. 72:1103–1127 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. R. W. D'Souza and H. Boxenbaum. Physiological pharmacokinetic models: Some aspects of theory, practice, and potential.Toxicol. Ind. Health. 4:151–171 (1988).

    PubMed  Google Scholar 

  16. K. B. Bischoff. Physiological pharmacokinetics.Bull. Math. Biol. 48:309–322 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. M. Rowland. Physiological pharmacokinetic models and interanimal species scaling.Pharmacol. Ther. 29:49–68 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. M. Rowland. Physiologic pharmacokinetic models: Relevance, experience, and future trends.Drug Metab. Rev. 15:55–74 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. A. J. J. Atkinson, T. I. Ruo, and M. C. Frederiksen. Physiological basis of multicompartmental models of drug distribution.Trends Pharmacol. Sci. 12:96–101 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. K. J. Himmelstein and R. J. Lutz. A review of the applications of physiologically based pharmacokinetic modeling.J. Pharmacokin. Biopharm. 7:127–145 (1979).

    Article  CAS  Google Scholar 

  21. R. Kawai, M. Lemaire, J.-L. Steimer, A. Bruelisauer, W. Niederberger, and M. Rowland. Physiologically based pharmacokinetic study on a cyclosporine derivative, SDZ IMM 125.J. Pharmacokin. Biopharm. 22:327–365 (1994).

    Article  CAS  Google Scholar 

  22. H. Sato, A Bruelisauer, M. Lemaire, and W. Niederberger. Physiological modeling of nonlinear hepatic first-pass of a novel 5-HT3 antagonist, SDZ ICM 567, in rats and dogs, and extrapolation to human. (in preparation).

  23. M. Gilbaldi and D. Perrier.Pharmacokinetics, Marcel Dekker, New York, 1982.

    Google Scholar 

  24. H. W. Haggard. The absorption, distribution, and elimination of ethyl ether. II. Analysis of the mechanism of the absorption and elimination of such a gas or vapor as ethyl ether.J. Biol. Chem. 59:753–770 (1924).

    CAS  Google Scholar 

  25. T. Teorell. Kinetics of the distribution of substances administered to the body.Arch. Int. Pharmacodyn. Ther. 57:205–240 (1937).

    CAS  Google Scholar 

  26. W. W. Mapleson. An electric analogue for uptake and exchange of inert gases and other agents.J. Appl. Physiol. 18:197–204 (1963).

    CAS  PubMed  Google Scholar 

  27. R. Bellman, R. Kalaba, and J. A. Jacquez. Some mathematical aspects of chemotherapy.Bull. Math. Biophysics. 22:181–190 (1960).

    Article  Google Scholar 

  28. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  29. K. B. Bischoff, R. L. Dedrick, and D. S. Zaharko. Preliminary model for methotrexate pharmacokinetics.J. Pharm. Sci. 59:149–154 (1970).

    Article  CAS  PubMed  Google Scholar 

  30. K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1351 (1968).

    Article  CAS  PubMed  Google Scholar 

  31. H. Boxenbaum and R. W. D'Souza. Interspecies pharmacokinetic scaling, biological design, and neoteny. In B. Testa (ed.),Advances in Drug Research, Academic Press, London, 1990, pp. 139–196.

    Google Scholar 

  32. J. Mordenti. Man versus beast: Pharmacokinetic scaling in mammals.J. Pharm. Sci. 75:1028–1046 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. L. P. Balant and M. Cex-Fabry. Physiological pharmacokinetic modeling.Xenobiotica 20:1241–1257 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. E. Voisin, M. Ruthsatz, J. M. Collins, and P. C. Hoyle. Extrapolation of animal toxicity to humans: Interspecies comparisons in drug development.Reg. Toxicol. Pharmacol. 12:107–116 (1990).

    Article  CAS  Google Scholar 

  35. M. E. Andersen, D. Krewski, and J. R. Withey. Physiological pharmacokinetics and cancer risk assessment.Cancer Letters 69:1–14 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. R. B. Conolly and M. E. Andersen. Biologically based pharmacodynamic models: Tools for toxicological research and risk assessment.Ann. Rev. Pharmacol. Toxicol. 31:503–523 (1991).

    Article  CAS  Google Scholar 

  37. H.-W. Leung. Use of physiologically based pharmacokinetic models to establish biological exposure indexes.Am. Ind. Hyg. Assoc. J. 53:369–374 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. H.-W. Leung. Development and utilization of physiologically based pharmacokinetic models for toxicological applications.J. Toxicol. Environ. Health 32:247–267 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. K. Krishnan and M. E. Andersen. Physiological modeling and cancer risk assessment.New Trends Pharmacokin. (1991).

  40. D. Krewski, J. R. Whithey, L. F. Ku, and C. C. Travis. Physiologically based pharmacokinetic models: Applications in carcinogenic risk assessment.New Trends Pharmacokin. (1991).

  41. J. N. Blancato. Physiologically-based pharmacokinetic models in risk and exposure assessment.Ann. Ist. Super. Sanita. 27:601–608 (1991).

    CAS  PubMed  Google Scholar 

  42. R. J. Lutz and R. L. Dedrick. Implications of pharmacokinetic modeling in risk assessment analysis.Environ. Health Perspect. 76:97–106 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. A. Boddy, L. Aarons, and K. Petrak. Efficiency of drug targeting: Steady-state considerations using a three-compartment model.Pharm. Res. 6:367–372 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. C. A. Hunt, R. D. MacGregor, and R. A. Siegel. Engineering targetingin vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations.Pharm. Res. 3:333–344 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. J. M. Gallo, C. T. Hung, P. K. Gupta, and D. G. Perrier. Physiological pharmacokinetic model of adriamycin delivery via magnetic albumin microspheres in the rat.J. Pharmacokin. Biopharm. 17:305–326 (1989).

    Article  CAS  Google Scholar 

  46. F. G. King and R. L. Dedrick. Physiological pharmacokinetic modeling of cis-dichlorodiamineplatinum(II) (DDP) in the mouse.J. Pharmacokin. Biopharm. 20:95–99 (1992).

    Article  CAS  Google Scholar 

  47. F. G. King and R. L. Dedrick. Physiologic pharmacokinetic modeling of cis-dichlorodiamineplatinum(II) (DDP) in several species.J. Pharmacokin. Biopharm. 14:131–157 (1986).

    Article  CAS  Google Scholar 

  48. S. M. Eaton, P. Wedeking, M. F. Tweedle, and W. C. Eckelman. A multi-organ, axially distributed model of capillary permeability for a magnetic resonance imaging contrast agent.J. Pharm. Sci. 82:531–536 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. D. W. A. Bourne, J. J. Jacobs, A. Awaluddin, D. J. Maddalena, J. G. Wilson, and R. E. Boyd. Physiological modeling of disposition of potential tumor-imaging radiopharmaceuticals in tumor-bearing mice.J. Pharm. Sci. 81:408–412 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. D. C. Maneval, D. Z. D'Argenio, and W. Wolf. A kinetic model for 99mTc-DMSA in the rat.Eur. J. Nucl. Med. 16:29–34 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Y. Sugiyama, D. C. Kim, H. Sato, S. Yanai, H. Satoh, T. Iga, and M. Hanano. Receptor-mediated disposition of polypeptides: Kinetic analysis of the transport of epidermal growth factor as a model peptide usingin vitro isolated perfused organs andin vivo systems.J. Control. Rel. 13:157–174 (1990).

    Article  CAS  Google Scholar 

  52. H. Sato, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Physiologically based pharmacokinetics of radioiodinated human-β-endorphin in rats. An application of the capillary membrane-limited model.Drug. Metab. Dispos. 15:540–550 (1987).

    CAS  PubMed  Google Scholar 

  53. D. G. Covell, J. Barbet, O. D. Holton, C. D. V. Black, R. J. Parker, and J. N. Winstein. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab′ in mice.Cancer Res. 46:3969–3978 (1986).

    CAS  PubMed  Google Scholar 

  54. S. M. Somani, S. K. Gupta, A. Khalique, and L. K. Unni. Physiological pharmacokinetic and pharmacodynamic model of physostigmine in the rat.Drug Metab. Disp. 19:655–660 (1991).

    CAS  Google Scholar 

  55. J. M. Gearhart, G. W. Jepson, H. J. Clewell, M. E. Andersen, and R. B. Conolly. Physiologically based pharmacokinetic and pharmacodynamic model for the inhibition of acetylcholinesterase by diisopropylfluorophosphate.Toxicol. Appl. Pharmacol. 106:295–310 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. P. C. Hiestanel, M. Graeber, V. Hurtenbach, P. Herrmann, S. Caunisuli, B. P. Richardson, M. K. Ebecle, and S. F. Birel. The new cyclosporine derivative, SDZ IMM 125;in vitro andin vivo pharmacologic effects.Transplant Proc. 24:31–38 (1992).

    Google Scholar 

  57. R. Kawai and M. Lemaire. Role of blood cell uptake on cyclosporine pharmacokinetics. In Proc. Int'l. Symp. on Blood Binding and Drug Transfer, J. P. Tillement and H. Eckert (eds.), Fort et Clair. Paris, 1993, pp. 89–108.

  58. F. Y. Bois, L. Zeise, and T. N. Tozer. Precision and sensitivity of pharmacokinetic models for cancer risk assessment: Tetrachloroethylene in mice, rats, and humans.Toxicol. Appl. Pharmacol. 102:300–315 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. D. M. Hetrick, A. M. Jarabek, and C. C. Travis. Sensitivity analysis for physiologically based pharmacokinetic models.J. Pharmacokin. Biopharm. 19:1–20 (1991).

    CAS  Google Scholar 

  60. Advanced Continuous Simulation Language (ACSL), Mitchell and Gauthier Associates, Concord, MA, 1987.

  61. E. C. Steiner, P. S. McCroskey, and T. D. Rev.SimuSolv: Modeling and Simulation Software, Reference Guide, Dow Chemical, Midland, MI, 1990.

    Google Scholar 

  62. L. J. Notarianni. Plasma protein binding of drugs in pregnancy and in neonates.Clin. Pharmacokin. 18:20–36 (1990).

    Article  CAS  Google Scholar 

  63. S. M. Wallace and R. K. Verbeeck. Plasma protein binding of drugs in the elderly.Clin. Pharmacokin. 12:41–72 (1987).

    Article  CAS  Google Scholar 

  64. D. Alvarez, R. Mastai, A. Lennie, G. Soifer, D. Levi, and R. Terg. Noninvasive measurement of portal venous blood flow in patients with cirrhosis: Effect of physiological and pharmacological response.Digest. Dis. Sci. 36:82–86 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. B. C. Chen, S.-C. Huang, G. Germano, W. Kuhle, R. A. Hawkins, D. Buxton, R. C. Brunken, H. R. Schelbert, and M. E. Phelps. Noninvasive quantification of hepatic arterial blood flow with nitrogen-13-ammonia and dynamic positron emission tomography.J. Nucl. Med. 32:2219–2228 (1991).

    CAS  Google Scholar 

  66. J. R. Horn, B. Zierler, L. A. Bauer, W. Reiss, and J. E. Strandness. Estimation of hepatic blood flow in branches of hepatic vessels utilizing a noninvasive, duplex doppler method.J. Clin. Pharmacol. 30:922–929 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. F. Weber, M. Anlauf, and M. Serdarevic. Noninvasive, quantitative determination of muscle blood flow in man by a combination of venous-occlusion plethsmography and computed tomography.Basic Res. Cardiol. 83:327–341 (1988).

    Article  CAS  PubMed  Google Scholar 

  68. A. L. Hinderliter, M. A. Fitzpatrick, N. Schork, and S. Julius. Research utility of noninvasive methods for measurement of cardiac output.Clin. Pharmacol. Ther. 42:419–425 (1987).

    Article  Google Scholar 

  69. W. Weber, M. Looby, and J. Brockmoeller. Evaluation of hepatic function using the pharmacokinetics of a therapeutically administered drug. Application to the immunosuppresant cyclosporin.Clin. Pharmacokin. 23:69–83 (1992).

    Article  CAS  Google Scholar 

  70. W. R. Crom, S. L. Webster, L. Bobo, M. E. Teresi, M. V. Relling, and W. E. Evans. Simultaneous administration of multiple model substrates to assess hepatic drug clearance.Clin. Pharmacol. Ther. 41:645–650 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charnick, S.B., Kawai, R., Nedelman, J.R. et al. Physiologically based pharmacokinetic modeling as a tool for drug development. Journal of Pharmacokinetics and Biopharmaceutics 23, 217–229 (1995). https://doi.org/10.1007/BF02354273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02354273

Key Words

Navigation