Skip to main content
Log in

Nitric oxide and the cerebral vascular function

  • Review
  • Published:
Journal of Biomedical Science

Abstract

The presence of a cholinergic vasodilator innervation to cerebral circulation is well established. Despite its high endogenous concentration in cerebral blood vessels, acetylcholine (ACh) is not the transmitter for vasodilation. This finding has led to the discovery that nitric oxide (NO), which is coreleased with ACh and neural peptides such as vasoactive intestinal polypeptide (VIP) from the respective cholinergic-nitrergic (nitric oxidergic) nerves and the VIPergic-nitrergic nerves, is the primary transmitter in relaxing smooth muscle. ACh and VIP act presynaptically to inhibit and facilitate, respectively, the release of NO. Release of NO from cerebral vascular endothelial cells is also well established. A similar system for recyclingL-citrulline toL-arginine for synthesizing more NO has been demonstrated in both cerebral perivascular nerves and endothelial cells. Neuronal and endothelial NO appears to play an important role in controlling cerebral vascular tone and circulation in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asada Y, Yu JG, Lee TJ-F. Myo-endothelial junctions in endothelium-dependent vasodilation. Cell Vision 4:308–317;1997.

    Google Scholar 

  2. Ayajika K, Okamura T, Toda N. Neurogenic relaxations caused by nicotine in isolated cat middle cerebral arteries. J Pharmacol Exp Ther 270:795–801;1994.

    Google Scholar 

  3. Bredt DS, Hwang PM, Snyder SH. Localisation of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770;1990.

    Google Scholar 

  4. Ceccatelli S, Lundberg JM, Fahrenkrug J, Bredt DS, Snyder SH, Hokflet T. Evidence for involvement of nitric oxide in the regulation of hypothalamic portal blood flow. Neuroscience 51:769–772;1992.

    Google Scholar 

  5. Chen FY, Lee TJ-F. Role of nitric oxide in neurogenic vasodilation of porcine cerebral artery. J Pharmacol Exp Ther 265:339–345;1993.

    Google Scholar 

  6. Chen FY, Lee TJ-F. Argining synthesis from citrulline in perivascular nerves of cerebral artery. J Pharmacol Exp Ther 273:895–901;1995.

    Google Scholar 

  7. Chen AF, O'Brien T, Katusic ZS. Transfer and expression of recombinant nitric oxide synthase genes in the cardiovascular system. Trends Pharmacol Sci 19(7):276–286;1998.

    Google Scholar 

  8. Chorobski J, Penfield W. Cerebral vasodilator nerves and their pathway from the medulla oblongata. Arch Neurol Psychiatry 28:1257–1289;1932.

    Google Scholar 

  9. Edvinsson L, Mackenzie ET, McCulloch J. Cerebral Blood Flow and Metabolism. New York, Raven Press, 1993.

    Google Scholar 

  10. Estrada C, Mengual E, Gonzalez C. Local NADPH-diaphorase neurons innervate pial arteries and lie close or project to intracranial blood vessels: A possible role for nitric oxide in the regulation of cerebral blood flow. J Cereb Blood Flow Metab 13:978–984;1993.

    Google Scholar 

  11. Faraci FM. Regulation of the cerebral circulation by endothelium. Pharmacol Ther 56:1–22;1992.

    Google Scholar 

  12. Faraci FM, Brian JE. Nitric oxide and the cerebral circulation. Stroke 25:692–703;1994.

    Google Scholar 

  13. Flesch M, Schwarz A, Bohm M. Effects of red and white wine on endothelium-dependent vasorelaxation of rat aorta and human coronary arteries. Am J Physiol 275(4 Pt 2):H1183–1190;1998.

    Google Scholar 

  14. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376;1980.

    Google Scholar 

  15. Gabbott PL, Bacon SJ. Histochemical localization of NADPH-dependent diaphorase (nitric oxide synthase) activity in vascular endothelial cells in the rat brain. Neuroseience 57(1):79–95;1993.

    Google Scholar 

  16. Gjesdal K, Bille S, Bredesen JE, Bjorge E, Halvorsen B, Langseth K, Lunde PK, Silvertssen E. Exposure to glyceryl trinitrate during gun powder production: Plasma glyceryl trinitrate concentration, elimination kinetics, and discomfort among production workers. Br J Int Med 42(1):27–31;1985.

    Google Scholar 

  17. Goadsby PJ. Sphenopalatine ganglion stimulation increases regional cerebral blood flow independent of glucose utilization in the cat. Brain Res 506:145–148;1990.

    Google Scholar 

  18. Goadsby PJ, Uddman R, Edvinsson L. Cerebral vasodilatation in the cat involves nitric oxide from parasympathetic nerves. Brain Res 707(1):110–118;1996.

    Google Scholar 

  19. Gonzalez C, Barroso C, Martin G, Gulbenkian S, Estrada C. Neuronal nitric oxide synthase activation by vasoactive intestinal peptide in bovine cerebral arteries. J Cereb Blood Flow Metab 17:977–984;1997.

    Google Scholar 

  20. Gotoh F, Fukuuchi Y, Amano T, Tanaka K, Uematsu D, Suzuki N, Kawamura J, Yamawaki T, Itoh N, Obara K. Role of endothelium in responses of pial vessels to changes in blood pressure and to carbond dioxide in cats. J Cereb Blood Flow Metab 7(1):S275;1987.

  21. Iadecola C, Pelligrino DA, Moskowitz MA, Lassen NA. Nitric oxide synthase inhibition and cerebrovascular regulation. J Cereb Blood Flow Metab 14:175–192;1994.

    Google Scholar 

  22. Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 60:82–92;1987.

    Google Scholar 

  23. Ignarro LJ. Biological action and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res 65:1–21;1989.

    Google Scholar 

  24. Ishine T, Asada Y, Yu JG, Lee TJ-F. Nitric oxide is predominant mediator for neurogenic vasodilation in the porcine pial veins. J Pharmacol Exp Ther (in press).

  25. Iversen HK, Olesen J. Headache induced by a nitric oxide donor (nitroglycerin) responds to sumatriptan. A human model for development of migraine drugs. Cephalalgia 16(6):412–418;1996.

    Google Scholar 

  26. Kimura T, Yu JG, Edvisson L, Lee TJ-F. Cholinergic, nitric oxidergic innervation in cerebral arteries of the cat. Brain Res 773;117–124;1997.

    Google Scholar 

  27. Kobari M, Fukuuchi Y, Tomita M, Tanahashi N, Takeda H. Role of nitric oxide in regulation of cerebral microvascular tone and autoregulation of cerebral blood flow in cats. Brain Res 667(2):255–262;1994.

    Google Scholar 

  28. Kontos HA, Wei EP. Arginine analogues inhibit responses mediated by ATP-sensitive K+ channels. Am J Physiol 271:H1498-H1506;1996.

    Google Scholar 

  29. Lassen LH, Thomsen LL, Kruuse C, Iversen HK, Olesen J. Histamine-1 receptor blockade does not prevent nitroglycerin induced migraine. Support for the NO-hypothesis of migraine. Eur J Clin Pharmacol 49(5):335–339;1996.

    Google Scholar 

  30. Lassen LH, Ashina M, Christiansen I, Ulrich V, Grover R, Donaldson J, Olesen J. Nitric oxide synthase inhibition: A new principle in the treatment of migraine attacks. Cephalalgia 18(1):27–32;1998.

    Google Scholar 

  31. Lee TJ-F, Su C, Bevan JA. Nonsympathetic dilator innervation of cat cerebral arteries. Experientia 31:1424–1425;1975.

    Google Scholar 

  32. Lee TJ-F, Hume WR, Su C, Bevan JA. Neurogenic vasodilation of cat cerebral arteries. Circ Res 42:535–542;1978.

    Google Scholar 

  33. Lee TJ-F. Direct evidence against acetylcholine as the dilator transmitter in the cat cerebral artery. Eur J Pharmacol 68:393–394;1980.

    Google Scholar 

  34. Lee TJ-F. Cholinergic mechanisms in the large cat cerebral arteries. Circ Res 50:870–879;1982.

    Google Scholar 

  35. Lee TJ-F, Saito A, Beresein I. Vasoactive intestinal polypeptide-like substance: The potential cerebral vasodilator transmitter. Science 224:898–901;1984.

    Google Scholar 

  36. Lee TJ-F, McIlhany MP, Sarwinsky S. Erythrocyte extracts enhance neurogenic vasoconstriction of cerebral arteries in vitro. J Cereb Blood Flow Metab 4:474–476;1984.

    Google Scholar 

  37. Lee TJ-F. Sympathetic and nonsympathetic transmitter mechanisms in cerebral vasodilation and constriction. In: Owman C et al., eds. Proceedings of the Erin K. Fernstrom Symposium on Neural Regulation of Brain Circulation, 1985. Amsterdam, Elsevier Biomedical Press, 285–296;1986.

    Google Scholar 

  38. Lee TJ-F. Evidence for and against VIP as a transmitter for vasodilation in cerebral blood vessels. In: Edvinsson L, McCulloch J, eds. Peptidergic Mechanisms in the Cerebral Circulation. Chichester, Ellis Horwood, 65–74;1987.

    Google Scholar 

  39. Lee TJ-F, Linnik MD, Miao FJ-P. Erythrocyte extracts and cerebral vascular function. In: Bevan JA, Majewski H, Maxwell RA, Story DF, eds. Vascular Neuroeffector Mechanisms. Oxford, IRL Press, 299–309;1988.

    Google Scholar 

  40. Lee TJ-F, Fang YX, Nickils GA. Cyclic nucleotides and cerebral neurogenic vasodilation. In: Seylaz J, Mackenzie ET, eds. Neurotransmission and Cerebrovascular Function. Amsterdam, Elsevier, 277–280;1989.

    Google Scholar 

  41. Lee TJ-F, Sarwinski SJ. Nitric oxidergic neurogenic vasodilation in the porcine basilar artery. Blood Vessels 28:402–412;1991.

    Google Scholar 

  42. Lee TJ-F. Putative transmitters in cerebral vasodilation. In: Bevan JA, Bevan RD, eds. The Human Brain Circulation: Functional Changes in Disease. Totowa, Humana Press, 73–91;1994.

    Google Scholar 

  43. Lee TJ-F, Sarwinski S, Ishine T, Lai C, Chen FY. Inhibition of cerebral neurogenic vasodilation byL-glutamine and nitric oxide synthase inhibitors. J Pharmacol Exp Ther 267:353–358;1996.

    Google Scholar 

  44. Lee TJ-F. Endothelial messengers and cerebral vascular tone regulation. In: Olesen J, Edvinsson L, eds. Headache Pathogenesis: Monoamines, Neuropeptides, Purines, and Nitric Oxide. Philadelphia, Lippincott-Raven, 61–72;1997.

    Google Scholar 

  45. Limmroth V, Cutrer FM, Moskowitz MA. Neurotransmitters and neuropeptides in headache. Curr Opin Neurol 9(3):206–210;1996.

    Google Scholar 

  46. Linnik MD, Lee TJ-F. Effects of hemoglobin on neurogenic responses and cholinergic parameters in porcine cerebral arteries. J Cereb Blood Flow Metab 9:219–225;1989.

    Google Scholar 

  47. Liu J, Lee TJ-F. Mechanism of prejunctional muscarinic receptor-mediated inhibition of neurogenic vasodilation in cerebral arteries. Am J Physiol 276:H194-H204;1999.

    Google Scholar 

  48. Ma J, Meng W, Ayata C, Huang PL, Fishman MC, Moskowitz MA. L-NNA-sensitive regional cerebral blood flow augmentation during hypercapnia in type III NOS mutant mice. Am Physiol Soc 271;H1717-H1719;1996.

    Google Scholar 

  49. Martinez MC, Bosch-Morrell F, Raya A, Roma J, Aldasoro M, Vila J, Lluch S, Romero FJ. 4-Hydroxynonenal, a lipid peroxidation product, induces relaxation of human cerebral arteries. J Cereb Blood Flow Metab 14(4):693–696;1994.

    Google Scholar 

  50. Martin W, Villani GM, Jothianandan D, Furchgott RF: Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther 232(3):708–716;1985.

    Google Scholar 

  51. Miao FJ-P, Lee TJ-F. Effects of bilirubin on cerebral arterial tone in vitro. J Cereb Blood Flow Metab 9:666–674;1989.

    Google Scholar 

  52. Morita-Tsuzuki Y, Hardebo JE, Bouskela E. Inhibition of nitric oxide synthase attenuates the cerebral blood flow response to stimulation of postganglionic parasympathetic nerves in the rat. J Cereb Blood Flow Metab 13(6):993–997;1993.

    Google Scholar 

  53. Munno I, Pellegrino NM, Maruccio C, Conrotto L, Jirillo E, Covelli V. Neurological damage mediated by cytokines. Acta Neurol (Napoli) 14(2):81–89;1992.

    Google Scholar 

  54. Nozaki K, Moskowitz MA, Maynard KI, Koketsu N, Dawson TM, Bredt DS, Snyder SH. Possible origins and distribution of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 13:70–79;1993.

    Google Scholar 

  55. Okuno T, Itakura TL, Lee TJ-F, Masami U, Shimizu M, Komai N. Cerebral pial arterial innervation with specific reference to GABAergic innervations. J Auton Nerv Sys 49:S105-S110;1994.

    Google Scholar 

  56. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526;1987.

    Google Scholar 

  57. Poeggel G, Muller M, Seidel I, Rechardt L, Bernstein HG. Histochemistry of guanylate cyclase, phosphodiesterase, and NADPH-diaphorase (nitric oxide synthase) in rat brain vasculature. J Cardiovasc Pharmacol 20(suppl 12):S76–79;1992.

    Google Scholar 

  58. Saito A, Masaki T, Uchiyama Y, Lee TJ-F, Goto K. Calcitonin gene-related peptide (CGRP) and vasodilator nerves in large cerebral arteries of cats. J Pharmacol Exp Ther 248:455–462;1989.

    Google Scholar 

  59. Saito A, Goto K. Vasodilator innervation of small cerebral arteries of guinea pigs. J Auton Nerv Syst 49(suppl):S59-S62;1994.

    Google Scholar 

  60. Schmuck K, Ullmer C, Kalkman HO, Probst A, Lubbert H. Activation of meningeal 5-HT2B receptors: An early step in the generation of migraine headache? Eur J Neurosci 8(5):959–967;1996.

    Google Scholar 

  61. Seylaz J, Hara H, Pinard E, Moravitch S, MacKenzie ET, Edvinsson L. Effect of stimulation of the sphenopalatine ganglion on cortical blood flow in the rat. J Cereb Blood Flow Metab 8:875–878;1988.

    Google Scholar 

  62. Suzuki N, Nardebo JE, Kahrstrom J, Owman C. Selective electrical stimulation of postganglionic cerebrovascular parasympathetic nerve fibers originating from the sphenopalatine ganglion enhances the cortical blood flow in the rat. J Cereb Blood Flow Metab 10:383–391;1990.

    Google Scholar 

  63. Suzuki N, Hardebo JE. The cerebrovascular parasympathetic innervation. Cerebrovasc Brain Metab Rev 5(1):33–46;1993.

    Google Scholar 

  64. Thomsen LL, Olesen J. Nitric oxide theory of migraine. Clin Neurosci 5(1):28–33;1998.

    Google Scholar 

  65. Toda N, Okamura T. Mechanism underlying the response to vasodilator nerve stimulation in isolated dog and monkey cerebral arteries. Am J Physiol 259:H1511–1517;1990.

    Google Scholar 

  66. Toda N, Ajajiki K, Okamura T. Neural mechanism underline basilar arterial constriction by intracisternal L-NNA in anesthetized dogs. Am J Physiol 265:H103-H107;1993.

    Google Scholar 

  67. Tomimoto H, Akiguchi I, Wakita H, Nakamura S, Kimura J. Distribution of NADPH diaphorase in the cerebral blood vessels of rats: A histochemical study. Neurosci Lett 156:105–108;1993.

    Google Scholar 

  68. Wang Q, Paulson OB, Lassen NA. Is autoregulation of cerebral blood flow in rats influenced by nitro-L-arginine, a blocker of the synthesis of nitric oxide? Acta Physiol Scand 145:297–298;1992.

    Google Scholar 

  69. Yu JG, Ishine T, Kimura T, O'Brien WE, Lee TJ-F.L-Citrulline conversion toL-arginine in sphenopalatine ganglia and cerebral perivascular nerves in the pig. Am J Physiol 273:H2192-H2199;1997.

    Google Scholar 

  70. Yu JG, O'Brien WE, Lee TJ-F. Morphologic evidence forL-citrulline conversion toL-arginine via the argininosuccinate pathway in porcine cerebral perivascular nerves. J Cereb Blood Blow Metab 17:884–893;1997.

    Google Scholar 

  71. Yu JG, Kimura T, Chang X-F, Lee TJ-F. Segregation of VIPergic-nitric oxidergic and cholinergic-nitric oxidergic innervation in porcine middle cerebral arteries. Brain Res 801:78–87;1998.

    Google Scholar 

  72. Zhang W, Edvinsson L, Lee TJ-F. Mechanism of nicotine-induced relaxation in the porcine basilar artery. J Pharmacol Exp Ther 284:790–797;1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T.J.F. Nitric oxide and the cerebral vascular function. J Biomed Sci 7, 16–26 (2000). https://doi.org/10.1007/BF02255914

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255914

Key Words

Navigation