Skip to main content
Log in

5-HT2 and D2 dopamine receptor occupancy in the living human brain

A PET study with risperidone

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

It has been suggested that a combined blockade of 5-HT2 and D2 dopamine receptors may be superior to D2 dopamine antagonists alone in the treatment of schizophrenia. Risperidone, which has a high affinity for 5-HT2 and D2 dopamine receptors in vitro, is a new antipsychotic drug that has been developed according to this hypothesis. The aim of this study was to examine if risperidone indeed induces 5-HT2 and D2 dopamine receptor occupancy in vivo in humans. Central receptor occupancy was examined by positron emission tomography (PET) in three healthy men after oral administration of 1 mg risperidone. [11C]N-methylspiperone ([11C]NMSP) was used as a radioligand for determination of 5-HT2 receptor occupancy in the neocortex. Both an equilibrium ratio analysis and a kinetic three-compartmental analysis indicated a 5-HT2 receptor occupancy about 60%. [11C]raclopride was used as a radioligand for determination of D2 dopamine receptor occupancy in the striatum and the calculated occupancy was about 50%. This is the first quantitative determination of 5-HT2 receptor occupancy induced by an antipsychotic drug in the living human brain. The results indicate that 5-HT2 receptor occupancy should be very high at the dose level of 4–10 mg risperidone daily, as suggested for clinical use. Risperidone is thus an appropriate compound for clinical evaluation of the benefit of combined 5-HT2 and D2 dopamine receptor blockade in the treatment of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balsara JJ, Jadhav JH, Chandorkar AG (1979) Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology 62:67–69

    Google Scholar 

  • Barnes TRE (1989) A rating scale for drug-induced akathisia. Br J Psychiatry 154:672–676

    Google Scholar 

  • Baron JC, Martinot JL, Cambon H, Boulenger JP, Poirier MF, Caillard V, Blin J, Huret JD, Loc'h C, Maziere B (1989) Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology 99:463–472

    Google Scholar 

  • Bergström M, Boëthius J, Eriksson L, Greitz T, Ribbe T, Widén L (1981) Head fixation device for reproducible position alignment in transmission CT and positron emission tomography. J Comput Assist Tomogr 5:136–141

    Google Scholar 

  • Bleich A, Brown S-L, Kahn R, Praag HM van (1988) The role of serotonin in schizophrenia. Schizophr Bull 14:297–315

    Google Scholar 

  • Blin J, Pappata S, Kiyosawa M, Crouzel C, Baron JC (1988) [18F]setoperone: a new high-affinity ligand for positron emission tomography study of the serotonin-2 receptors in baboon brain in vivo. Eur J Pharmacol 147:73–82

    Google Scholar 

  • Blin J, Sette G, Fiorelli M, Bletry O, Elghozi JL, Crozel C, Baron JC (1990) A method for the in vivo investigation of the serotonergic 5-HT2 receptors in the human cerebral cortex using positron emission tomography and18F-labeled setoperone. J Neurochem 54:1744–1754

    Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Google Scholar 

  • Ceulemans DLS, Gelders YG, Hoppenbrouwers M-LJA, Reyntjens AJM, Janssen PAJ (1985) Effect of serotonin antagonism in schizophrenia: a pilot study with setoperone. Psychopharmacology 85:329–332

    Google Scholar 

  • Claus A, Bollen J, De Cuyper H, Eneman M, Malfroid M, Peuskens J, Heylen S (1992) Risperidone versus haloperidol in the treatment of chronic schizophrenic patients: a multicenter doubleblind comparative study. Acta Psychiatr Scand 85:295–305

    Google Scholar 

  • Costall B, Fortune DH, Naylor RJ, Marsden CD, Pycock C (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacology 14:859–868

    Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Google Scholar 

  • Crouzel C, Guillaume M, Barré L, Lemaire C, Piké VW (1992) Ligands and tracers for PET studies on the 5HT system — current status. J Nucl Med Biol 19:857–870

    Google Scholar 

  • Csernansky JG, Poscher M, Faull KF (1990) Serotonin in schizophrenia. In: Coccaro EF, Murphy DL (eds) Serotonin in major psychiatric disorders. American Psychiatric Press, Washington, DC, pp 209–230

    Google Scholar 

  • Dannals RF, Ravert HT, Wilson AA, Wagner Jr HN (1986) An improved synthesis of (3-N-11C]Methyl)spiperone. Appl Radiat Isot 37:433–434

    Google Scholar 

  • Eriksson L, Holte S, Bohm C, Kesselberg M, Hovander B (1988) Automatic blood sampling systems for positron emission tomography. IEEE Trans Nucl Sci 35:703–707

    Google Scholar 

  • Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedström C-G, Litton J-E, Sedvall G (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tmography. Proc Natl Acad Sci USA 82:3863–3867

    Google Scholar 

  • Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231:258–261

    Google Scholar 

  • Farde L, Pauli S, Hall H, Stone-Elander S, Eriksson L, Halldin C, Högberg T, Nilsson L, Sjögren I (1988) Stereoselective binding for11C-raclopride in living human brain — a search for extrastriatal central D2-dopamine receptors by PET. Psychopharmacology 94:471–478

    Google Scholar 

  • Farde L, Eriksson L, Blomquist G, Halldin C (1989) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET — A coparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708

    Google Scholar 

  • Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner Jr HN (1987) In vivo binding of3H-N-methylspiperone to dopamine and serotonin receptors. Life Sci 40:987–995

    Google Scholar 

  • Hall H, Farde L, Sedvall G (1988) Human dopamine receptor subtypes — in vitro binding analysis using3H-SCH 23390 and3H-raclopride. J Neural Transm 73:7–21

    Google Scholar 

  • Halldin C, Farde L, Högberg T, Hall H, Ström P, Ohlberger A, Solin O (1991) A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamides. Preparation and in vitro dopamine D-2 binding. Nucl Med Biol 18:871–881

    Google Scholar 

  • Hicks PB (1990) The effect of serotonergic agents on haloperidolinduced catalepsy. Life Sci 47:1609–1615

    Google Scholar 

  • Hoyer D, Pazos A, Probst A, Palacios J (1986) Serotonin receptors in the human brain. II: Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res 376:97–107

    Google Scholar 

  • Janssen PAJ, Niemegeers CJE, Awouters F, Schellekens KHL, Megens AAHP, Meert TF (1988) Pharmacology of risperidone (R 64 766), a new antipsychotic with serotonin-S2 and dopamine-D2 antagonistic properties. J Pharmacol Exp Ther 244:685–693

    Google Scholar 

  • Korsgaard S, Gerlach J, Christenson E (1985) Behavioural aspects of serotonin-dopamine interaction in the monkey. Eur J Pharmacol 118:245–252

    Google Scholar 

  • Kostowski W, Gumulka W, Czlonkowski A (1972) Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and treated withp-chlorophenylalanine. Brain Res 48:443–446

    Google Scholar 

  • Leysen JE, Gommeren W, Eens A, de Chaffoy de Courcelles D, Stoof JC, Janssen PAJ (1988) Biochemical profile of risperidone, a new antipsychotic. J Pharmocol Exp Ther 247:661–670

    Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Rakic P, Innis RB (1989) Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. Proc Natl Acad Sci USA 86:6412–6416

    Google Scholar 

  • Litton JE, Holte S, Eriksson L (1990) Evaluation of the Karolinska new positron camerea system; the Scanditronix PC2048-15B. IEEE Trans Nucl Sci 37:743–748

    Google Scholar 

  • Lyon R, Titeler M, Frost J, Whitehouse P, Wong D, Wagner Jr H, Dannals R, Links J, Kuhar M (1986) [3H]3-N-Methylspiperone labels D2 dopamine in basal ganglia and S2 serotonin receptors in cerebral cortex. J Neurosci 6:2941–2949

    Google Scholar 

  • Mahgoub A, Idle JR, Dring LG, Lancaser R, Smith RL (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet September 17:584–586

    Google Scholar 

  • Mannens G, Huang M-L, Meuldermans W, Van Peer A, Hendrickx J, Verboven P, Mostmans E, Hurkmans R, Woestenborghs R, Cornelissen L, Lorreyne W, Heykants J: Absorption, excretion and metabolism of risperidone in volunteers after a single oral dose of 1 mg. Janssen Pharmaceutica, June 1990; Clinical Research Report R 64 766/25

  • Martres M-P, Bouthenet M-L, Sales N, Sokoloff P, Schwartz J-C (1985) Widespread distribution of brain dopamine receptors evidenced with [125]iodosulpiride, a highly selective ligand. Science 228:752–755

    Google Scholar 

  • Mintun M, Raichle M, Kilbourn M, Wooten G, Welch M (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 15:217–227

    Google Scholar 

  • Mizuki Y, Kajamura N, Imai T, Suetsugi M, Kai S, Kaneyuki H, Yamada M (1990) Effects of mianserin on negative symptoms in schizophrenia. Int Clin Psychopharmacology 5:83–95

    Google Scholar 

  • Pazos A, Probst A, Palacios J (1987) Serotonin receptors in the human brain. IV: Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139

    Google Scholar 

  • Peroutka SJ (1990) 5-Hydroxytryptamine receptor subtypes. Pharmacol Toxicol 67:373–383

    Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin,α-adrenergic, and histamine receptors to clinical potency. Am J Psychiatry 137:1518–1522

    Google Scholar 

  • Reyntjens A, Gelders YG, Hoppenbrouwers M-LJA, Vanden Bussche G (1986) Thymostenic effects of ritanserin (R 55667), a centrally acting serotonin-S2 receptor blocker. Drug Dev Res 8:205–211

    Google Scholar 

  • Schotte A, Maloteaux JM, Laduron PM (1983) Characterization and regional distribution of serotonin S2-receptors in human brain. Brain Res 276:231–235

    Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    Google Scholar 

  • Silver H, Blacker M, Weller MPI, Lerer B (1989) Treatment of chronic schizophrenia with cyproheptadine. Biol Psychiatry 25:502–504

    Google Scholar 

  • Simpson GM, Angus JWS (1970) A rating scale for extrapyramidal side effects. Acta Psychiatr Scand 212:11–19

    Google Scholar 

  • Smith M, Wolf AP, Brodie JD, Arnett CD, Brouche F, Shiuhe C-Y, Fowler JS, Russel JAG, MacGregor RR, Wolkin A, Angrist B, Rotrosen J, Peselow E (1988) Serial [18F]N-Methylspiroperidol PET studies to measure changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biol Psychiatry 23:653–663

    Google Scholar 

  • Sokoloff L, Reivish M, Kennedy C, Des Rosiers M, Patlak C, Pettigrew M, Sakurada I, Shinohara M (1977) The deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Google Scholar 

  • Steiner E, Bertilsson L, Säwe J, Bertling I, Sjökvist F (1988) Polymorphic debrisoquine hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther 44:431–435

    Google Scholar 

  • Swahn C-G, Farde L, Halldin C, Sedvall G (1992) Ligand metabolites in plasma during PET-studies with the11C-labelled dopamine antagonists, raclopride, SCH 23390 and N-methylspiroperidol. Hum Psychopharmacol 7:97–103

    Google Scholar 

  • Swart JAA, von der Werf JF, Wiegman T, Paans AMJ, Vaalburg W, Korf J (1990) In vivo binding of spiperone and N-methylspiperone to dopaminergic and serotonergic sites in the rat brain: multiple modeling and implications for PET scanning. J Cereb Blood Flow Metab 10:297–306

    Google Scholar 

  • van Kammen DP, Gelernter J (1987) Biochemical instability in schizophrenia II: The serotonin and γ-aminobutyric acid systems. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 753–758

    Google Scholar 

  • van Rossum JM (1966) The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn Ther 160:492–494

    Google Scholar 

  • Wagner Jr HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221:1264–1266

    Google Scholar 

  • Woestenborghs R, Geuens I, Van Roosbroeck D, Cornelissen L, Van Rompaey F, Knaeps F, Heykants J: Determination of risperidone and 9-hydroxyrisperidone (R 76477) in plasma by radioimmunoassay. Janssen Research Foundation, August 1990; Preclinical Research Report R 64766/24 (N 76562)

  • Wong DF, Wagner Jr HN, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglas KH, Petronis JD, Folstein MF, Toung JKT, Burns HD, Kuhar MJ (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226:1393–1396

    Google Scholar 

  • Wong DF, Gjedde A, Wagner Jr HN (1986) Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands. J Cereb Blood Flow Metab 6:137–146

    Google Scholar 

  • Woolley DW, Shaw E (1954) A biochemical and pharmacological suggestion about certain mental disorders. Proc Natl Acad Sci USA 40:228–231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was presented in part at the XVIIIth C.I.N.P. Congress, Nice, France, 28th June-2nd July 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyberg, S., Farde, L., Eriksson, L. et al. 5-HT2 and D2 dopamine receptor occupancy in the living human brain. Psychopharmacology 110, 265–272 (1993). https://doi.org/10.1007/BF02251280

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02251280

Key words

Navigation