Skip to main content
Log in

Cerebral decarboxylation ofmeta- andpara-tyrosine

  • Published:
Experientia Aims and scope Submit manuscript

Summary

The decarboxylase inhibitor DL-a-monofluoromethyldopa reduces, in a dose dependent manner, the concentration of striatalp-tyramine in the mouse. Homovanillic acid is also significantly reduced. Conversely, this treatment increases them-tyramine concentration. Administration ofm-tyrosine produces large increases inm-tyramine and a slight decrease inp-tyramine; these changes are potentiated in the presence of the decarboxylase inhibitor. Such data along with other recently published results permit the conclusion thatm-tyramine arises from phenylalanine viam-tyrosine and thatp-tyramine arises by decarboxylation ofp-tyrosine. Both these reactions are closely related to the activity of tyrosine hydroxylase and the availability of appropriate substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amin, A. H., Crawford, T. B. B., and Gaddum, J. H., The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J. Physiol.126 (1954) 596–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Andén, N.-E., Roos, B.-E., and Werdinius, T., On the occurrence of homovanillic acid in brain and cerebrospinal fluid and its determination by a fluorimetric method. Life Sci.2 (1963) 442–458.

    Article  Google Scholar 

  3. Bertler, A., and Rosengren, E., On the distribution in brain of monoamines and of enzymes responsible for their formation. Experientia15 (1959) 382–384.

    Article  CAS  PubMed  Google Scholar 

  4. Bertler, A., and Rosengren, E., Occurrence and distribution of dopamine in brain and other tissues. Experientia15 (1959) 10–11.

    Article  CAS  PubMed  Google Scholar 

  5. Bey, P., Jung, M. J., Koch-Weser, J., Palfreyman, M. G., Sjoerdsma, A., Wagner, J., and Zraïka, M., Further studies on the inhibition of monoamine synthesis by monofluoromethyldopa. Br. J. Pharmac.70 (1980) 571–576.

    Article  CAS  Google Scholar 

  6. Blaschko, H., The activity of 1(-)-dopa decarboxylase. J. Physiol.101 (1942) 337–349.

    Article  CAS  PubMed Central  Google Scholar 

  7. Blaschko, H., Substrate specificity of amino-acid decarboxylases. Biochem. biophys. Acta4 (1950) 130–137.

    Article  CAS  Google Scholar 

  8. Boulton, A. A., Amines and theories in psychiatry. Lancet2 (1974) 70–71.

    Google Scholar 

  9. Boulton, A. A., Cerebral aryl alkyl aminergic mechanisms, in: Trace amines and the brain, Psychopharmacology series 1, pp. 22–39. Eds E. Usdin and M. Sandler. Marcel Dekker Inc., New York 1976.

    Google Scholar 

  10. Boulton, A. A., Trace amines in the central nervous system, in: Physiological and pharmacological biochemistry section of international review of biochemistry, vol. 26, pp. 176–206. Ed. K. Tipton. University Park Press, Baltimore 1979.

    Google Scholar 

  11. Boulton, A. A., The trace amines: neurohumors (cytosolic, pre-and/or post-synaptic, secondary, indirect)? Behav. Brain Sci.2 (1979) 418.

    Article  Google Scholar 

  12. Boulton, A. A., and Baker, G. B., The subcellular distribution of some monoamines following their intraventricular injection into the rat. Can. J. Biochem.52 (1974) 288–293.

    Article  CAS  PubMed  Google Scholar 

  13. Boulton, A. A., and Baker, G. B., The subcellular distribution of β-phenylethylamine,p-tyramine and tryptamine in rat brain. J. Neurochem.25 (1975) 477–481.

    Article  CAS  PubMed  Google Scholar 

  14. Boulton, A. A., and Dyck, L. E., Biosynthesis and excretion ofmeta- andpara-tyramine in the rat. Life Sci.14 (1974) 2497–2506.

    Article  CAS  PubMed  Google Scholar 

  15. Boulton, A.A., Davis, B.A., Yu, P.H., Wormith, J.S., and Addington, D., Trace acid levels in the plasma and MAO activity in the platelets of violent offenders. Psychiat. Res. (1982) in press.

  16. Boulton, A. A., and Dyck, L. E., The effect of reserpine on the amine induced release of tritiatedmeta-tyramine,para-tyramine and dopamine from slices of rat striatum. Res. Commun. Psychol. Psychiat. Behav.5 (1980) 79–94.

    CAS  Google Scholar 

  17. Boulton, A. A., Dyck, L. E., and Durden, D. A., Hydroxylation of β-phenylethylamine in the rat. Life Sci.15 (1974) 1673–1683.

    Article  CAS  PubMed  Google Scholar 

  18. Boulton, A. A., and Juorio, A. V., The tyramines: are they involved in the psychoses. Biol. Psychiat.14 (1979) 413–419.

    CAS  PubMed  Google Scholar 

  19. Boulton, A. A., and Juorio, A. V., Brain trace amines, in: Handbook of neurochemistry, vol. 1, pp. 189–222. Ed. A. Lajtha. Plenum Publishing Corp., New York 1982.

    Google Scholar 

  20. Boulton, A. A., Juorio, A. V., Philips, S. R., and Wu, P. H., Some arylalkylamines in rabbit brain. Brain Res.96 (1975) 212–216.

    Article  CAS  PubMed  Google Scholar 

  21. Boulton, A. A., Juorio, A. V., Philips, S. R., and Wu, P. H., The effect of reserpine and 6-hydroxydopamine on the concentrations of some arylakylamines in rat brain. Br. J. Pharmac.59 (1977) 209–214.

    Article  CAS  Google Scholar 

  22. Boulton, A. A., and Marjerrison, G. L., Effect of L-dopa therapy on urinaryp-tyramine excretion and EEG changes in Parkinson's disease. Nature236 (1972) 76–78.

    Article  CAS  PubMed  Google Scholar 

  23. Boulton, A. A., Marjerrison, G. L., and Majer, J. R., Excretion, metabolism and cerebral distribution of some non-catecholic primary amines. J. med. Acid. Sci., USSR5 (1971) 68–70.

    Google Scholar 

  24. Boulton, A. A., and Quan, L., Formation ofp-tyramine from dopa and dopamine in rat brain. Can. J. Biochem.48 (1970) 1287–1291.

    Article  CAS  PubMed  Google Scholar 

  25. Boulton, A. A., and Wu, P. H., Biosynthesis of cerebral phenolic amines. II. in vivo regional formation ofp-tyramine and octopamine from tyrosine and dopamine. Can. J. Biochem.51 (1973) 428–435.

    Article  CAS  PubMed  Google Scholar 

  26. Brandau, K., and Axelrod, J., The biosynthesis of octopamine. Naunyn-Schmiedeberg's Arch. Pharmak.273 (1972) 123–133.

    Article  CAS  Google Scholar 

  27. Brune, G. G., and Himwich, H. E., Indole metabolites in schizophrenic patients. Archs gen. Psychiat.6 (1962) 324–328.

    Article  Google Scholar 

  28. Christensen, J. G., Dairman, W., and Udenfriend, S., Preparation and properties of a homogenous aromatic L-amino acid decarboxylase from hog kidney. Archs Biochem. Biophys.141 (1970) 356–367.

    Article  Google Scholar 

  29. Davis, B. A., and Boulton, A. A., The metabolism of ingested deuterated β-phenylethylamine in a human male. Eur. J. Mass Spec. Med.1 (1980) 149–153.

    CAS  Google Scholar 

  30. Davis, B. A., Yu, P. H., Carlson, K., O'Sulivan, K., and Boulton, A. A., Plasma levels of phenylacetic acid,m- andp-hydroxyphenylacetic acid and platelet MAO activity in schizophrenics and other patients. Psychiatry Res.6 (1982) 97–105.

    Article  CAS  PubMed  Google Scholar 

  31. Dourish, C. T., An observational analysis of the behavioural effects of β-phenylethylamine in isolated and grouped mice. Prog. Neuropsychiat.6 (1982) 143–158.

    CAS  Google Scholar 

  32. Dourish, C. T., A pharmacological analysis of the hyperactivity syndrome induced by β-phenylethylamine in the mouse. Br. J. Pharmac.77 (1982) 129–139.

    Article  CAS  Google Scholar 

  33. Durden, D. A., and Philips, S. R., Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J. Neurochem.34 (1980) 1725–1732.

    Article  CAS  PubMed  Google Scholar 

  34. Durden, D. A., Philips, S. R., and Boulton, A. A., Identification and distribution of β-phenylethylamine in the rat. Can. J. Biochem.51 (1973) 995–1002.

    Article  CAS  PubMed  Google Scholar 

  35. Dyck, L. E., Uptake and release ofmeta-tyramine,para-tyramine, and dopamine in rat striatal slices. Neurochem. Res.3 (1978) 775–791.

    Article  CAS  PubMed  Google Scholar 

  36. Dyck, L. E., Release of radiolabelled dopamine,p-tyramine, andm-tyramine from rat striatal slices by some aminotetralins. Neurochem. Res.6 (1981) 365–375.

    Article  CAS  PubMed  Google Scholar 

  37. Dyck, L. E., and Boulton, A. A., The effect of some drugs on the urinary excretion of some arylalkylamines in the rat. Res. Commun. Chem. Path. Pharmac.11 (1975) 73–77.

    CAS  Google Scholar 

  38. Dyck, L. E., and Boulton, A. A., The effect of reserpine and various monoamine oxidase inhibitors on the uptake and release of tritiatedmeta-tyramine,para-tyramine and dopamine in rat striatal slices. Res. Commun. Psychol. Psychiat. Behav.5 (1980) 61–78.

    CAS  Google Scholar 

  39. Dyck, L. E., Boulton, A. A., and Jones, R. S. G., A comparison of the effects of methylphenidate and amphetamine on the simultaneous release of radiolabelled dopamine andp-orm-tyramine from rat striatal slices. Eur. J. Pharmac.68 (1980) 33–40.

    Article  CAS  Google Scholar 

  40. Dyck, L. E., Juorio, A. V., and Boulton, A. A., The in vitro release of endogenousm-tyramine,p-tyramine and dopamine from rat striatum. Neurochem. Res.6 (1982) 705–716.

    Article  Google Scholar 

  41. Faurbye, A., The role of amines in the etiology of schizophrenia. Comprehensive Psychiat.9 (1968) 155–177.

    Article  CAS  Google Scholar 

  42. Fellman, J. H., Roth, E. S., and Fujita, T. S., Decarboxylation to tyramine is not a major route of tyrosine metabolism in mammals. Archs Biochem. Biophys.174 (1976) 562–567.

    Article  CAS  Google Scholar 

  43. Fischer, J. E., and Baldessarini, R. J., False neurotransmitters and hepatic failure. Lancet2 (1971) 75–80.

    Article  CAS  PubMed  Google Scholar 

  44. Henwood, R. W., Boulton, A. A., and Phillis, J. W., Iontophoretic studies of some trace amines in the mammalian CNS. Brain Res.164 (1979) 347–351.

    Article  CAS  PubMed  Google Scholar 

  45. Jones, R. S. G., Specific enhancement of neuronal responses to catecholamine byp-tyramine. J. Neurosci. Res.6 (1981) 49–61.

    Article  CAS  PubMed  Google Scholar 

  46. Jones, R. S. G., Noradrenaline-octopamine interactions on cortical neurones in the rat. Eur. J. Pharmac.77 (1982) 159–162.

    Article  CAS  Google Scholar 

  47. Jones, R. S. G., A comparison of the responses of cortical neurones to iontophoretically applied tryptamine and 5-hydroxytryptamine in the rat. Neuropharmacology21 (1982) 209–214.

    Article  CAS  PubMed  Google Scholar 

  48. Jones, R. S. G., and Boulton, A. A., Interactions betweenp-tyramine,m-tyramine, or β-phenylethylamine and dopamine on single neurons in the cortex and caudate nucleus of the rat. Can. J. Physiol. Pharmac.58 (1980) 222–227.

    Article  CAS  Google Scholar 

  49. Jones, R. S. G., and Boulton, A. A., Tryptamine and 5-hydroxytryptamine: Actions and interactions on cortical neurons in the rat. Life Sci.27 (1980) 1849–1856.

    Article  CAS  PubMed  Google Scholar 

  50. Juorio, A. V., Presence and metabolism of β-phenylethylamine,p-tyramine,m-tyramine and tryptamine in the brain of the domestic fowl. Brain Res.111 (1976) 442–445.

    Article  CAS  PubMed  Google Scholar 

  51. Juorio, A. V., Effects of chloropromazine and other antipsychotic drugs on mouse striatal tyramine. Life Sci.20 (1977) 1663–1668.

    Article  CAS  PubMed  Google Scholar 

  52. Juorio, A. V., Effects of d-amphetamine and antipsychotic drug administration on striatal tyramine levels in the mouse. Brain Res.66 (1977) 377–384.

    Google Scholar 

  53. Juorio, A. V., Drug-induced changes in the formation, storage and metabolism of tyramine in the mouse. Br. J. Pharmac.66 (1979) 377–384.

    Article  CAS  Google Scholar 

  54. Juorio, A. V., Effect of stress and 1-DOPA administration on mouse striatal tyramine and homovanillic acid levels. Brain Res.179 (1979) 186–189.

    Article  CAS  PubMed  Google Scholar 

  55. Juorio, A. V., Effect of molindone and fluphenazine on the brain concentration of some phenolic and catecholic amines in the mouse and the rat. Br. J. Pharmac.70 (1980) 475–480.

    Article  CAS  Google Scholar 

  56. Juorio, A. V., The effect of γ-hydroxybutyrate on mouse striatal tyramine, dopamine and homovanillic acid. Br. J. Pharmac.75 (1982) 447–450.

    Article  CAS  Google Scholar 

  57. Juorio, A. V., A possible role for tyramines in brain function and some mental disorders. Gen. Pharmac.13 (1982) 181–183.

    Article  CAS  Google Scholar 

  58. Juorio, A. V., and Boulton, A. A., The effects of some precursor aminoacids and enzyme inhibitors on the mouse striatal concentration of tyramines and homovanillic acid. J. Neurochem.39 (1982) 859–863.

    Article  CAS  Google Scholar 

  59. Juorio, A. V., and Jones, R. S. G., The effects of mesencephalic lesions on tyramine and dopamine in the caudate nucleus of the rat. J. Neurochem.36 (1981) 1898–1903.

    Article  CAS  PubMed  Google Scholar 

  60. Lovenberg, W., Weissbach, H., and Udenfriend, S., Aromatic L-amino acid decarboxylase. J. biol. Chem.237 (1962) 89–93.

    Article  CAS  PubMed  Google Scholar 

  61. Petrali, E. H., Differential effects of benztropine and desipramine on the high affinity uptake ofpara-tyramine in slices of the caudate nucleus and hypothalamus. Neurochem. Res.5 (1980) 297–300.

    Article  CAS  PubMed  Google Scholar 

  62. Petrali, E. H., Boulton, A. A., and Dyck, L. E., Uptake ofpara-tyramine andmeta-tyramine into slices of the caudate nucleus and hypothalamus of the rat. Neurochem. Res.4 (1979) 633–642.

    Article  CAS  PubMed  Google Scholar 

  63. Philips, S. R., and Boulton, A. A., The effect of monoamine oxidase inhibitors on some arylalkylamines in rat striatum. J. Neurochem.33 (1979) 159–169.

    Article  CAS  PubMed  Google Scholar 

  64. Philips, S. R., Davis, B. A., Durden, D. A., and Boulton, A. A., Identification and distribution ofm-tyramine in the rat. Can. J. Biochem.53 (1975) 65–69.

    Article  CAS  PubMed  Google Scholar 

  65. Philips, S. R., Durden, D. A., and Boulton, A. A., Identification and distribution of tryptamine in the rat. Can. J. Biochem.52 (1974) 447–451.

    Article  CAS  PubMed  Google Scholar 

  66. Philips, S. R., Durden, D. A., and Boulton, A. A., Identification and distribution ofp-tyramine in the rat. Can. J. Biochem.52 (1974) 366–373.

    Article  CAS  PubMed  Google Scholar 

  67. Philips, S. R., Rozdilsky, B., and Boulton, A. A., Evidence for the presence ofm-tyramine,p-tyramine, tryptamine and phenylethylamine in the rat brain and several areas of the human brain. Biol. Psychiat.13 (1978) 51–57.

    CAS  PubMed  Google Scholar 

  68. Sandler, M., and Reynolds, G. P., Does phenylethylamine cause schizophrenia? Lancet1 (1976) 70–71.

    Article  CAS  PubMed  Google Scholar 

  69. Sandler, M., Ruthven, C. R. J., Goodwin, B. L., Field, H., and Matthews, R., Phenylethylamine overproduction in aggressive psychopaths. Lancet2 (1978) 1269–1270.

    Article  CAS  PubMed  Google Scholar 

  70. Sandler, M., Ruthven, C. R. J., Goodwin, B. L., Reynolds, G. P., Rao, V. A. R., and Coppen, A., Deficient production of tyramine and octopamine in cases of depression. Nature278 (1979) 357–358.

    Article  CAS  PubMed  Google Scholar 

  71. Sims, K. L., and Bloom, F. E., Rat brain L-3,4-dihydroxyphenylalanine and L-5-hydroxytryptophan decarboxylase activities: Differential effect of 6-hydroxydopamine. Brain Res.49 (1973) 165–175.

    Article  CAS  PubMed  Google Scholar 

  72. Sims, K. L., Davis, G. A., and Bloom, F. E., Activity of 3,4-dihydroxyl-L-phenylalanine and 5-hydroxy-L-tryptophan decarboxylases in rat brain: Assay characteristics and distribution. J. Neurochem.20 (1973) 449–464.

    Article  CAS  PubMed  Google Scholar 

  73. Smith, I., and Kellow, A. H., Aromatic amines and Parkinson's disease. Nature221 (1969) 1261.

    Article  CAS  PubMed  Google Scholar 

  74. Wu, P. H., and Boulton, A. A., Distribution, metabolism and disappearance of intraventricularly injectedp-tyramine in the rat. Can. J. Biochem.52 (1974) 374–381.

    Article  CAS  PubMed  Google Scholar 

  75. Wu, P. H., and Boulton, A. A., Metabolism, distribution and disappearance of injected β-phenylethylamine in the rat. Can. J. Biochem.53 (1975) 42–50.

    Article  CAS  PubMed  Google Scholar 

  76. Wyatt, R. J., Gillin, J. C., Stoff, D. M., Moja, E. A., and Tinklenberg, J. R., β-Phenylethylamine and the neuropsychiatric disturbances, in: Neuroregulators and psychiatric disorders, p. 31. Eds E. Usdin, D. A. Hamberg and J. D. Barchas. Oxford Univ. Press, New York 1977.

    Google Scholar 

  77. Yuwiler, A., Geller, E., and Eiduson, S., Studies on 5-hydroxytryptophan decarboxylase. I. In vitro inhibition and substrate interaction. Archs Biochem. Biophys.80 (1959) 162–173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgments. We thank Dr N. Seiler for suggesting the investigation of the effect of DL-a-monofluoromethyldopa on tyrosine decarboxylation; Drs D.A. Durden and C. Kazakoff for supervising the mass spectrometric analyses; Dr B.A. Davis for synthesizing the deuteratedp-andm-tyramine; D. Choo, M. Mizuno, G. Wheatley and E. P. Zarycki for expert technical assistance and Saskatchewan Health and the Medical Research Council of Canada for continuing financial support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulton, A.A., Juorio, A.V. Cerebral decarboxylation ofmeta- andpara-tyrosine. Experientia 39, 130–134 (1983). https://doi.org/10.1007/BF01958860

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01958860

Keywords

Navigation