Skip to main content
Log in

PET radiopharmaceuticals in Europe: Current use and data relevant for the formulation of summaries of product characteristics (SPCs)

  • Occasional survey
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The increasing use of radiopharmaceuticals for positron emission tomography (PET) has come to the attention of regulatory bodies. In order to help authorities in all aspects, the EANM has formed a task group for licensing PET radiopharmaceuticals; this group has surveyed the use of these compounds in Europe by a questionnaire. The number of PET centres that responded to the questionnaire was 26, which included more than 90% of the larger European PET centres. The survey showed that 2-[18F]fluoro-2-deoxyglucose is by far the most important PET radiopharmaceutical with more than 200 applications per week, followed by [15O]water, [15O]carbonmonoxide, [13N]ammonia, [11C]-l-methionine, andl-6-[18F]fluoro-DOPA. More than 25 other PET radiopharmaceuticals are in regular use, however, at rather low application frequencies. The data were used by the European Pharmacopoeia Commission for its priority rating for requesting the formulation of monographs. Since it is likely that group registrations will be issued by authorities for the PET radiopharmaceuticals, relevant data on toxicity and dosimetry for the formulation of summaries of product characteristics have been collected by the task group as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. European Pharmacopoeia Commission. Guideline for residual solvent levels in drug substances and excipients used for the preparation of medicinal products. Document (PA/PH/SG (94) 143).

  2. Som P, Atkins HL, Bandoypadhyay D, et al.J Nucl Med 1980; 21: 670–675.

    Google Scholar 

  3. Reivich M, Kuhl D, Wolf A, et al. The [18F]-fluorodeoxyglucose method for the measurement of local cerebral glucose metabolism in man.Circ Res 1979; 44: 127–133.

    Google Scholar 

  4. Bida GT, Satyamurthy N, Barrio J. The synthesis of 2-[F-18]Fluoro-2-deoxy-d-glucose using glucals: a reexamination.J Nucl Med 1984; 25: 1327–1334.

    Google Scholar 

  5. Wienhard K, Pawlik G, Nebeling B, et al.J Cereb Blood Flow Metab 1991; 11: 485–491.

    Google Scholar 

  6. Füchtner F, Steinbach J, Mäding P, Johannsen B. Basic hydrolysis of 2-[18F]fluoro-1,3,4,6-tetra-O-acetyl-d-glucose in the preparation of 2-[18F]fluoro-2-deoxy-d-glucose. Appl. Radiat Isot 1995;in press.

  7. Baudot P, Jaque M, Robin M. Effect of a diaza-polyoxa-macrobicyclic complexing agent on the urinary elimination of lead in lead-poisoned rats.Toxicol Appl Pharmacol 1977; 41: 113–115.

    Google Scholar 

  8. Baumann M, Schäfer E, Grein H. Short-term studies with the cryptating agent hexaoxa-diaza-bicyclo-hexacosane in rats.Arch Toxicol 1984; 55 Suppl 7: 427–429.

    Google Scholar 

  9. Müller WH, Beaumatin J. Distribution of a cryptating agent in excreta and its influence on urinary elimination of Na, K, Mg, Ca, and Zn in the rat.Life Sci 1976; 17: 1815–1820.

    Google Scholar 

  10. Meyer G-J, Coenen HH, Waters SL, et al. Quality assurance and quality control of short-lived radiopharmaceuticals for PET. In Stöcklin G, Pike V, eds. Radiopharmaceuticals for positron emission tomography: methodological aspects. Dordrecht Boston London: Kluwer Academic; 1993: 91–150.

    Google Scholar 

  11. Hunt R. Some effects of quarternary ammonium compounds on the autonomic nervous system.J Pharmacol Exp Ther 1926; 28: 367–388.

    Google Scholar 

  12. Jones SC, Alavi A, Christman D, et al. The radiation dosimetry of 2-[F-18]fluoro 2-deoxy-d-glucose.J Nucl Med 1982; 23: 613–617.

    Google Scholar 

  13. Mejia AA, Nakamura T, Masatoshi I, et al. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies.J Nucl Med 1991; 32: 699–706.

    Google Scholar 

  14. ICRP publication 53.Radiation dose to patients from radiopharmaceuticals. Oxford: Pergamon, 1988.

    Google Scholar 

  15. Junker D, Fitschen J. Spezielle Probleme des Strahlenschutzes. In: Hundeshagen H, ed.Handbuch der Medizin. Radiologie vol 15/1b, Heidelberg Berlin New York: Springer, 1988: pp 119–147.

    Google Scholar 

  16. ICRP publication 601990 recommendations of the international commission on radiological protection. Oxford: Pergamon, 1991.

    Google Scholar 

  17. Dowd MT, Chen C-T, Wendel MJ, et al. Radition dose to the bladder wall from 2-[18F]fluoro-2-deoxy-d-glucose in adult humans.J Nucl Med 1991; 32: 707–712.

    Google Scholar 

  18. Huda W, Sandison G A. Estimates of the effective dose equivalent HE, in positron emission tomography studies.Eur J Nucl Med 1990; 17: 116–120.

    Google Scholar 

  19. Johannsson L, Mattsson S, Nosslin B, Leide-Svegborn S. Effective dose from radiopharmaceuticals.Eur J Nucl Med 1992; 19: 933–938.

    Google Scholar 

  20. The Merck Index, 11th edn. Rahway N.J.: Merck; 1989.

  21. Kearfott KJ, Absorbed dose estimates for positron emission tomography (PET): C15O,11CO, CO15OJ Nucl Med 1982; 23: 1031–1037.

    Google Scholar 

  22. Kearfott KJ, Rottenberg DA, Volpe BT. Design of steady-state PET protocols for neurobehavioural studies: CO15O and19Ne.J Comput Assist Tomogr 1983; 7: 51–57.

    Google Scholar 

  23. Bigler RE, Sgouros G. Biological analysis and dosimetry of15O-labelled O2, CO2, and CO gases administered continuously by inhalation.J Nucl Med 1983; 24: 431–437.

    Google Scholar 

  24. Smith T, Tong C, Lammertsma AA, et al. Dosimetry of intravenously administered oxygen 15 labelled water in man: a model based on experimental human data from 21 subjects.Eur J Nucl Med 1994; 21: 1126–1134.

    Google Scholar 

  25. Brihaye C, Depresseux JC, Comar D. Radiation dosimetry for bolus administration of oxygen-15-water.J Nucl Med 1995; 36: 651–656.

    Google Scholar 

  26. Lockwood AH. Absorbed doses of radiation after an intravenous injection of N-13 ammonia in man: concise communication.J Nucl Med 1980; 21: 276–278.

    Google Scholar 

  27. Forth W, Henschler D, Rummel W, eds.Allgemeine und spezielle Pharmakologie und Toxikologie. Zürich: Bibliographisches Institut, 1987.

    Google Scholar 

  28. Clark JC, Crouzel C, Meyer G-J, et al. Current methodology for oxygen-15 production for clinical use.Appl Radiat Isot 1987; 38: 597–600.

    Google Scholar 

  29. Luxen A, Perlmutter M, Bida GT, et al. Remote semiautomated production of 6-[18F]Fluoro-l-DOPA. for human studies with PET.Appl Radiat Isot 1990; 41: 275–281.

    Google Scholar 

  30. Seiler HG, Sigel H.Handbook of toxicity of inorganic compounds. New York: Marcel Dekker; 1988.

    Google Scholar 

  31. Deutsche Forschungsgemeinschaft.BAT Werte DFG, 1994.

  32. United States Pharmacopoeial Convention. Fluorodopa F 18 injection,Pharmacopoeial Forum 1991; 17: 1582–1584.

    Google Scholar 

  33. Luxen A, Barrio JR, Van Moffaert G, et al. Remote semiautomated production of 6-[18F]fluoro-l-DOPA for human studies with PET.J Labelled Comp Radiopharm 1988; 26: 465–466.

    Google Scholar 

  34. Wagner R. Removal of mercury contamination from 6-F-FDOPA preparations.J Labelled Comp Radiopharm 1993; 32: 250.

    Google Scholar 

  35. Lemaire C, Damhaut P, Plenevaux A, Comar D. Enantioselective synthesis of 6-[fluorine-18]fluoro-l-DOPA from no-carrier-added fluorine-18-fluoride.J Nucl Med 1994; 35: 1996–2002.

    Google Scholar 

  36. Sachs C, Jonsson G. Selective 6-hydroxy-DOPA induced degeneration of central and peripheral noradrenalin neurons. Brain Res 1972; 40: 563–568.

    Google Scholar 

  37. Pike VW, Kensett MJ, Turton DR, et al. Labelled agents for PET studies of the dopaminergic system — some quality assurance methods, experience and issues.Appl Radiat Isot 1990; 41: 483–492.

    Google Scholar 

  38. Harvey J, Firnau G, Garnett ES. Estimation of the radiation dose in man due to 6-[18F]Fluoro-l-DOPA.J Nucl Med 1985; 26: 931–935.

    Google Scholar 

  39. Lu E, Meyer E, Kuwabara H, et al. Reduction of radiation absorbed dose in F-18-FDPOA PET studies by hydration induced voiding.J Nucl Med 1995; 36: 98.

    Google Scholar 

  40. Hübner KF, Andrews GA, Buonocore E, et al. Carbon-11-labelled amino acids for the rectilinear and positron tomographic imaging of the human pancreas.J Nucl Med 1979; 20: 507–513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, G.J., Waters, S.L., Coenen, H.H. et al. PET radiopharmaceuticals in Europe: Current use and data relevant for the formulation of summaries of product characteristics (SPCs). Eur J Nucl Med 22, 1420–1432 (1995). https://doi.org/10.1007/BF01791152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01791152

Key words

Navigation