Skip to main content
Log in

Techniques for measuring renal transit time

  • Original article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

A variety of techniques have been used for quantitative estimation of renal transit time. We compared different indices of transit time in a group of 30 patients having baseline and ACE inhibitor technetium-99m mercaptoacetyltriglycine (MAG3) renography prior to arteriography: peak time, mean transit time, and the ratio of background-subtracted counts at 20 min to those at 3 min. Each index was calculated from whole-kidney ROI, cortical ROI, and cortical factor (by factor analysis). The strongest correlations between angiographic percent of stenosis and transit time index were observed for the peak time (Spearmanρ=0.469,n=53,P <0.005) and for the R20/3 (againρ=0.469,n=53,P <0.005) using the whole-kidney ROI and using only the baseline data without captopril. (Spearman'sρ is simply the correlation coefficient calculated from rank in list, which allows for nonlinear correlation.) Thus simple indices of transit time (whole-kidney peak time and R20/3) correlated as well with the observed pathology as did more complicated methods that required deconvolution, factor analysis, or selection of a cortical ROI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dore EK, Taplin GV, Johnson DE. Current interpretation of the sodium iodohippurate I-131 renogram.JAMA 1963; 185: 925–932.

    Google Scholar 

  2. Russell CD, Thorstad B, Yester MV, Stutzman M, Dubovsky EV. Quantitation of renal function with Tc-99m-MAG3.J Nucl Med 1988; 29: 1931–1933.

    Google Scholar 

  3. Russell CD, Li Y, Kahraman HN, Dubovsky EV. Renal clearance of technetium-99m-MAG3: normal values [letter].J Nucl Med 1995; 36: 706–708.

    Google Scholar 

  4. Russell CD, Yester MV, Dubovsky EV. Measurement of renal parenchymal transit time of99mTc-MAG3 using factor analysis.Nucl-Med 1990; 29: 170–176.

    Google Scholar 

  5. Schmidlin P. Quantitative evaluation and imaging of functions using pattern recognition methods.Phys Med Biol 1979; 24: 385–395.

    Google Scholar 

  6. Oppenheim BE, Appledorn CR. Functional renal imaging through factor analysis.J Nucl Med 1981; 22: 417–423.

    Google Scholar 

  7. Di Paola R, Banin JP, Aubry F, etal. Handling of dynamic sequences in nuclear medicine.IEEE Trans Nucl Sci 1982; NS29: 1310–1321.

    Google Scholar 

  8. Nijran KS, Barber DC. Towards automatic analysis of dynamic radionuclide studies using principal-components factor analysis.Phys Med Biol 1985; 30: 1315–1325.

    Google Scholar 

  9. Pavel DG, Olea E, Bello A, Kang H, Lundeen B, Patel B. Factor analysis of dynamic renal studies in urology [abstract].J Nucl Med 1988; 29: 816.

    Google Scholar 

  10. Macleod MA, Houston AS. Factor analysis of dynamic structures (FADS) in the diagnosis of renal disease.Eur J Nucl Med 1989; 15: 601–604.

    Google Scholar 

  11. Kendall M, Gibbons JD.Rank correlation methods, 5th edn. New York: Oxford University Press; 1990: 8–10; 72–76.

    Google Scholar 

  12. Hosmer DW, Lemeshow SL.Applied logistic regression. New York: Wiley; 1989: 33–34; 72–76.

    Google Scholar 

  13. Farmelant MH, Bakos K, Burrows B. Physiological determinants of renal tubular passage times.J Nucl Med 1969; 10: 641–645.

    Google Scholar 

  14. Cantraine FRL, Bergmann P, Geens M, Lenaers A, Jank K, Cleempoel H. A new model for the quantitative description of the nephrogram.Comput Biomed Res 1972; 5: 41–58.

    Google Scholar 

  15. DeGrazia JA, Schiebe PO, Jackson PE, Lucas ZJ, Fair WR, Vogel JM, Blumin LJ. Clinical applications of a kinetic model of hippurate distribution and renal clearance.J Nucl Med 1974; 15: 102–114.

    Google Scholar 

  16. Kenny RW, Ackery DM, Fleming JS, Goddard BA, Grant RW. Deconvolution analysis of the scintillation camera renogram.Br J Radiol 1975; 48: 481–486.

    Google Scholar 

  17. Diffey BL, Hall FM, Corfield JR. The Tc-99m-DTPA dynamic renal scan with deconvolution analysis.J Nucl Med 1976; 17: 352–355.

    Google Scholar 

  18. Gruenewald SM, Collins LT. Renovascular hypertension; quantitative renography as a screening test.Radiology 1983; 149: 287–291.

    Google Scholar 

  19. Britton KE, Nimmon CC. Deconvolution analysis and renal transit times in hypertension. In: Blaufox MD, ed.Evaluation of renal functional disease with radionuclides: the upper urinary tract. Basel: S. Karger; 1989: 235–247.

    Google Scholar 

  20. Russell CD. Measurement and interpretation of renal transit times. In: Murray IPC, Ell PJ, eds.Nuclear medicine in clinical diagnosis and treatment, vol 1. London: Churchill Livingstone; 1994: 241–245.

    Google Scholar 

  21. Whitfield HN, Britton KE, Kelsy Fry WF, Hendry CC, Nimmon CC, Travers P, Wickham JEA. The obstructed kidney: correlation between renal function and urodynamic assessment.Br J Urol 1977; 49: 615.

    Google Scholar 

  22. Kalika V, Bard RH, Iloreta A, Freeman LM, Heller S, Blaufox MD. Prediction of renal functional recovery after relief of upper urinary tract obstruction.J Urol 1981; 124: 301–305.

    Google Scholar 

  23. Vivian G, Barratt TM, Todd-Pokropek A, Gordon I. Physiologic variations of normal transit time in children.Eur J Nucl Med 1985; 11: 179–181.

    Google Scholar 

  24. Verboven M, Achten R, Keuppens F, Jonckheer M, Piepsz A. Radioisotopic transit parameters in obstruction of pelviureteral junction.Urology 1988; 32: 370–374.

    Google Scholar 

  25. Britton KE, Nimmon CC, Whitfield HN, Fry K, Hendry WF, Wickham JEA. The evaluation of obstructive nephropathy by means of parenchymal retention functions. In: Hollenberg NK, Lange S, eds.Radionuclides in nephrology. Stuttgart: Georg Thieme; 1980: 164.

    Google Scholar 

  26. Vivian GC, Barratt TM, Todd-Pokropek A, Gordon I. Renal parenchymal determination and analysis during dynamic99Tcm-DTPA scans in children.Nucl Med Commun 1984; 5: 35–40.

    Google Scholar 

  27. Szabo Z, Kutkuhn B, Georgescu G, Mecklenbeck W, Suatmadji A, Vosberg H. Parametrische Darstellung der Nierenfunktion mit99mTc-Merkaptoazetyltriglyzin (MAG3).Nucl-Med 1989; 28: 73–83.

    Google Scholar 

  28. Dubovsky EV, Russell CD, Japanwalla M, Mangipudy M. Bilateral response to captopril is nonspecific. In: Schmidt HAE, Hofer R, eds.Nuclear medicine: nuclear medicine in research and practice. New York: Schattauer; 1992: 523–526.

    Google Scholar 

  29. Britton KE, Nimmon CC, Whitfield HN, etal. Obstructive nephropathy; successful evaluation with radionuclides.Lancet 1979; I: 905–907.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, C.D., Japanwalla, M., Khan, S. et al. Techniques for measuring renal transit time. Eur J Nucl Med 22, 1372–1378 (1995). https://doi.org/10.1007/BF01791144

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01791144

Key words

Navigation