Skip to main content
Log in

ECAT ART — a continuously rotating PET camera: Performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department

  • Original article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Advances in fully three-dimensional (3D) image reconstruction techniques have permitted the development of a commercial, rotating, partial ring, fully 3D positron emission tomographic (PET) scanner, the ECAT ART. The system has less than one-half the number of bismuth germanate detectors compared with a full ring scanner with the equivalent field of view, resulting in reduced capital cost. The performance characteristics, implications for installation in a nuclear medicine department, and clinical utility of the scanner are presented in this report. The sensitivity (20 cm diameter×20 cm long cylindrical phantom, no scatter correction) is 11400 cps·kBq−1·ml−1. This compares with 5800 and 40500 cps·kBq−1·ml−1 in 2D and 3D respectively for the equivalent full ring scanner (ECAT EXACT). With an energy window of 350–650 keV the maximum noise equivalent count (NEC) rate was 27 kcps at a radioactivity concentration of ~15 kBq·ml−1 in the cylinder. Spatial resolution is ~6 mm full width at half maximum on axis degrading to just under 8 mm at a distance of 20 cm off axis. Installation and use within the nuclear medicine department does not appreciably increase background levels of radiation on gamma cameras in adjacent rooms and the dose rate to an operator in the same room is 2 µSv·h−1 for a typical fluorine-18 fluorodeoxyglucose (18F-FDG) study with an initial injected activity of 370 MBq. The scanner has been used for clinical imaging with18F-FDG for neurological and oncological applications. Its novel use for imaging iron-52 transferrin for localising erythropoietic activity demonstrates its sensitivity and resolution advantages over a conventional dual-headed gamma camera. The ECAT ART provides a viable alternative to conventional full ring PET scanners without compromising the performance required for clinical PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colsher JG. Fully three-dimensional positron emission tomography.Phys Med Biol 1980; 25: 103–115.

    Google Scholar 

  2. Defrise M, Townsend DW, Clack R. Three-dimensional image reconstruction from complete projections.Phys Med Biol 1989; 34: 573–587

    Google Scholar 

  3. Kinahan PE, Rogers JG, Analytic 3-D image reconstruction using all detected events.IEEE Trans Nucl Sci 1989; NS-36: 964–968.

    Google Scholar 

  4. Spinks TJ, Jones T, Bailey DL, Townsend DW, Grootoonk S, Bloomfield PM, Gilardi M-C, Sipe B, Reed J. Physical performance of a positron tomograph for brain imaging with retractable septa.Phys Med Biol 1992; 37: 1637–1655.

    Google Scholar 

  5. Bailey DL, Jones T, Spinks TJ, Gilardi M-C, Townsend DW. Noise equivalent count measurements in a neuro-PET scanner with retractable septa.IEEE Trans Med Imag 1991; 10: 256–260.

    Google Scholar 

  6. Cherry SR, Dahlboom M, Hoffman EJ. 3D PET using a conventional multislice tomograph without septa.J Comput Assist Tomogr 1991; 15: 655–668.

    Google Scholar 

  7. Townsend DW, Geissbühler A, Defrise M, Hoffman EJ, Spinks TJ, Bailey DL, Gilardi M-C, Jones T. Fully three-dimensional reconstruction for a PET camera with retractable septa.IEEE Trans Med Imag 1991; 10: 505–512.

    Google Scholar 

  8. Bailey DL, Jones T, Watson JDG, Schnorr L, Frackowiak RSJ. Activation studies in 3D PET: evaluation of true signal gain. In: Uemera K, Lassen N, Jones T, Kanno I, eds.Quantification of brain function: tracer kinetics andimage analysis in brain PET. Amsterdam: Excerpta Medica; 1993: 341–350.

    Google Scholar 

  9. Cherry SR, Woods RP, Hoffman EJ, Mazziotta JC. Improved detection of focal cerebral blood flow changes using three-dimensional positron emission tomography.J Cereb Blood Flow Metab 1993; 13: 630–638.

    Google Scholar 

  10. Silbersweig DA, Stern E, Frith CD, et al. Detection of thirtysecond cognitive activations in single subjects with positron emission tomography: a new low-dose H2 15O regional cerebral blood flow three-dimensional imaging technique.J Cereb Blood Flow Metab 1993; 13: 617–629.

    Google Scholar 

  11. Watson JDG, Myers R, Frackowiak RSJ, Hajnal V, Woods RP, Mazziotta JC, Shipp S, Zeki S. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging.Cereb Cortex 1993; 3: 79–94.

    Google Scholar 

  12. Tadokoro M, Jones AKP, Cunningham VJ, Sashin D, Grootoonk S, Ashburner J, Jones T. Parametric images of11Cdiprenorphine binding using spectral analysis of dynamic PET images acquired in 3D. In: Uemera K, Lassen NA, Jones T, Kanno I, eds.Quantifiction of brain function — tracer kinetics and image analysis in brain PET. Amsterdam: Excerpta Medica; 1993: 289–294.

    Google Scholar 

  13. Carson RE, Endres CJ, Daube-Witherspoon ME. Quantitative accuracy of 3D PET for brain receptor imaging [abstract].J Nucl Med 1995; 36: 81P.

    Google Scholar 

  14. Weeks RA, Cunningham V, Walters S, Harding AE, Brooks DJ. A comparison of region of interest and statistical parametric mapping analysis in PET ligand work:11C-diprenorphine in Huntington's disease and Tourette's syndrome [abstract].J Cereb Blood Flow Metab 1995; 15 Suppl 1: S41.

    Google Scholar 

  15. Rakshi J, Bailey DL, Morrish PK, Brooks DJ. Implementation of 3D acquisition, reconstruction and analysis of dynamic fluorodopa studies. In: Myers R, Cunningham VJ, Bailey DL, Jones T, eds.Quantification of brain function using PET. San Diego: Academic Press; 1996: 82–87.

    Google Scholar 

  16. Townsend DW, Price JC, Mintun MA, Kinahan PE, Jadali F, Sashin D, Simpson N, Mathis CA. Scatter correction for brain receptor quantitation in 3D PET. In: Myers R, Cunningham VJ, Bailey DL, Jones T, eds.Quantification of brain function using PET, San Diego: Academic Press; 1996: 76–81.

    Google Scholar 

  17. Bailey DL, Lee K-S, Stocks G, Meikle SR, Dobko T. Clinical 3D PET for improved patient throughout [abstract].J Nucl Med 1993; 34: 184P.

    Google Scholar 

  18. Kinahan PE, Jadali F, Sahin D, Brown ML, Mintun MA, Baron RL, Townsend DW. A comparison of 2D and 3D abdominal PET imaging [abstract].J Nucl Med 1995; 36: 7P.

  19. Cutler PD, Xu M. Strategies to improve 3D whole body PET image reconstruction [abstract].J Nucl Med 1995; 36: 93P.

    Google Scholar 

  20. Chesler DA. Three-dimensional activity distribution from multiple positron scintigraphs.J Nucl Med 1971; 12: 347–348.

    Google Scholar 

  21. Muehllehner G. Positron camera with extended counting rate capability.J Nucl Med 1975; 16: 653–657.

    Google Scholar 

  22. Takami K, Ishimatsu K, Hayashi T, et al. Design considerations for a continuously rotating positron computed tomograph.IEEE Trans Nucl Sci 1982; NS-29(1): 534–538.

    Google Scholar 

  23. Townsend DW, Wensveen M, Byars LG, et al. A rotating PET scanner using BGO block detectors: design, performance and applications.J Nucl Med 1993; 34: 1367–1376.

    Google Scholar 

  24. Jeavons A, Kull K, Lee G, Townsend D, Frey P, Donath A. A proportional chamber positron camera for medical imaging.Nucl Instr Meth 1980; 176: 89–97.

    Google Scholar 

  25. Townsend DW, Frey P, Jeavons A, Reich G, et al. High density avalanche chamber (HIDAC) positron camera.J Nucl Med 1987; 28: 1554–1562.

    Google Scholar 

  26. Townsend DW, Spinks TJ, Jones T, Geissbühler A, Defrise M, Gilardi M-C, Heather JD. Three dimensional reconstruction of PET data from a multi-ring camera.IEEE Trans Nucl Sci 1989; 36: 1056–1065.

    Google Scholar 

  27. Townsend DW, Bishop H, Mintun MA, Byars LG, Geissbühler A, Nutt R. Physical and clinical performance of a rotating positron tomograph [abstract].J Nucl Med 1994; 35: 41P.

    Google Scholar 

  28. Lehmann W, Benchaou M, Slosman D, Townsend DW, Ryser JE, Widmann JJ, Rufenacht D, Lacroix JS, Donath A. La tomographie par emission de positrons (PET) dans l'evaluation preoperatoire des metastases ganglionnaires cervicales des cancers ORL.Schweiz Rundsch Med Prax 1993; 82: 1457–1461.

    Google Scholar 

  29. Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss WD. Performance evaluation of the positron scanner ECAT EXACT.J Comput Assist Tomogr 1992; 16: 804–813.

    Google Scholar 

  30. Carroll LR, Kretz P, Orcutt G, The orbiting rod source: improving performance in PET transmission correction scans. In: Esser PD, ed.Emission computed tomography — current trends. New York: Society of Nuclear Medicine; 1983: 235–247.

    Google Scholar 

  31. Huesman RH, Derenzo SE, Cahoon JL, Geyer AB, Moses WW, Uber DC, Vuletich T, Budinger TF. Orbiting transmission source for positron emission tomography.IEEE Trans Nucl Sci 1988; NS-35: 735–739.

    Google Scholar 

  32. Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. In: Grangeat P, Amans J-L, eds.Three-dimensional image reconstruction in radiology and nuclear medicine. London: Kluwer; Computational Imaging and Vision Series; 1996: 255–268.

    Google Scholar 

  33. Karp JS, Daube-Witherspoon ME, Hoffman EJ, et al. Performance standards in positron emission tomography.J Nucl Med 1991; 32: 2342–2350.

    Google Scholar 

  34. Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners.Eur J Nucl Med 1991; 18: 374–379.

    Google Scholar 

  35. Strother SC, Casey ME, Hoffman EJ. Measuring PET scanner sensitivity: relating countrates to image signal-to-noise ratios using noise equivalent counts.IEEE Trans Nucl Sci 1990; 37: 783–788.

    Google Scholar 

  36. Daube-Witherspoon ME, Muehllenher G. Treatment of axial data in three-dimensional PET.J Nucl Med 1987; 28: 1717–1724.

    Google Scholar 

  37. Xu M, Luk WK, Cutler PD, Digby WM. Local threshold for segmented attenuation correction of PET imaging of the thorax.IEEE Trans Nucl Sci 1994; NS-41: 1532–1537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, D.L., Young, H., Bloomfield, P.M. et al. ECAT ART — a continuously rotating PET camera: Performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 24, 6–15 (1997). https://doi.org/10.1007/BF01728302

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01728302

Key words

Navigation