Skip to main content
Log in

Uptake of iodine-123-α-methyl tyrosine by gliomas and non-neoplastic brain lesions

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Using single-photon emission tomography (SPET), the radiopharmaceuticall,-3-iodine-123-α-methyl tyrosine (IMT) has been applied to the imaging of amino acid transport into brain tumours. It was the aim of this study to investigate whether IMT SPET is capable of differentiating between high-grade gliomas, low-grade gliomas and non-neoplastic brain lesions. To this end, IMT uptake was determined in 53 patients using the triple-headed SPET camera MULTISPECT 3. Twenty-eight of these subjects suffered from high-grade gliomas (WHO grade III or IV), 12 from low-grade gliomas (WHO grade II), and 13 from non-neoplastic brain lesions, including lesions after effective therapy of a glioma (five cases), infarctions (four cases), inflammatory lesions (three cases) and traumatic haematoma (one case). IMT uptake was significantly higher in high-grade gliomas than in low-grade gliomas and non-neoplastic lesions. IMT uptake by low-grade gliomas was not significantly different from that by non-neoplastic lesions. Diagnostic sensitivity and specificity were 71% and 83% for differentiating high-grade from low-grade gliomas, 82% and 100% for distinguishing high-grade gliomas from non-neoplastic lesions, and 50% and 100% for discriminating low-grade gliomas from non-neoplastic lesions. Analogously to positron emission tomography with radioactively labelled amino acids and fluorine-18 deoxyglucose, IMT SPET may aid in differentiating high-grade gliomas from histologically benign brain tumours and non-neoplastic brain lesions; it is of only limited value in differentiating between non-neoplastic lesions and histologically benign brain tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Herholz K. Tracers for clinical evaluation of gliomas: a neurologist's view. In: Mazoyer BM, Heiss WD, Comar D, eds.PET studies on amino acid metabolism and protein synthesis. Dordrecht: Kluwer Academic; 1993: 203–214.

    Google Scholar 

  2. Leeds NE, Jackson EF. Current imaging techniques for the evaluation of brain neoplasms.Curr Opin Oncol 1994; 6: 254–261.

    PubMed  Google Scholar 

  3. Conti PS. Introduction to imaging brain tumor metabolism with positron emission tomography.Cancer Invest 1995; 13: 244–259.

    PubMed  Google Scholar 

  4. Biersack HJ, Coenen HH, Stöcklin G, et al. Imaging of brain tumors withl-3-[123I]Iodo-α-methyl tyrosine and SPET.J Nucl Med 1989; 30: 110–112.

    PubMed  Google Scholar 

  5. Langen K-J, Coenen HH, Roosen N, et al. SPET studies of brain tumors withl-[123I]iodo-α-methyl-thyrosine (123IMT): first clinical results and comparison with PET and124IMT.J Nucl Med 1990; 31: 281–286.

    PubMed  Google Scholar 

  6. Langen K-J, Roosen N, Coenen HH, et al. Brain and brain tumour uptake ofl-[123I]iodo-α-methyl-tyrosine: competition with naturall-amino acids.J Nucl Med 1991; 32: 1225–1228.

    PubMed  Google Scholar 

  7. Kawai K, Fujibayashi Y, Saji H, Yonekura Y, Konishi J, Kubodera A, Yokoyama A. A strategy for the study of cerebral amino acid transport using an iodine-123-labelled amino acid radiopharmaceutical: 3-iodo-alpha-methyl-l-tyrosine.J Nucl Med 1991; 32: 819–824.

    PubMed  Google Scholar 

  8. Guth-Tougelides B, Müller S, Mehdorn MM, Knust EJ, Dutschka K, Reiners C. Anreicherung vonDL-3-123I-Jod-α-Methyltyrosin in Hurntumorrezidiven.Nucl Med 1995: 34: 71–75.

    Google Scholar 

  9. Zülch KJ. Principles of the new World Health Organisation (WHO) classification.Neuroradiology 1980; 19: 59–66.

    PubMed  Google Scholar 

  10. Machulla HJ, Skansdal A, Stöcklin G.123(125)Xe-exposed KlO3, a reagent for iodination with high specific activity.Radioclin Acta 1977; 24: 42–46.

    Google Scholar 

  11. Fischer S, Wolf H, Brandau W, Clausen M, Henze E, Schober O. Iodierung von α-Methyltyrosin (AMT): Optimierung der Methode für die Routinepräparation.Nucl Med 1993; 32: A113.

    Google Scholar 

  12. Kuikka JT, Tenhunen-Eskelinen M, Jurvelin J, Kiliänen H. Physical performance of the Siemens Multi SPET 3 gamma camera.Nucl Med Commun 1993; 14: 490–497.

    PubMed  Google Scholar 

  13. Chang LT. A method for attenuation correction in radionuclide computed tomography.IEEE Trans Nucl Sci 1978; NS-2612: 2780–2789.

    Google Scholar 

  14. Kuwert T, Morgenroth C, Woesler B, Matheja P, Palkovic S, Vollet B, Schäfers M, Wassmann H, Schober O. Influence of size of regions of interest on the measurement of uptake of iodine-123-α-methyl thyrosine by brain tumours.Nucl Med Commun 1996; 17: 609–615.

    PubMed  Google Scholar 

  15. Bortz J.Lehrbuch der Statistik, 2nd edn. Berlin Heidelberg New York: Springer, 1985.

    Google Scholar 

  16. Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jennings MT, Moots PL, Kessler RM. Optimal cutoff levels of F18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET.Radiology 1995; 195: 47–52.

    PubMed  Google Scholar 

  17. Müller SP, Reiners C. Studies and recommendations on the design of ROC analyses in nuclear medicine.Nucl Med 1995; 34: 24–41.

    Google Scholar 

  18. Herholz K, Ziffling P, Staffen W, et al. Uncoupling of hexose transport and pbosphorylation in human gliomas demonstrated by PET.Eur J Cancer Clin Oncol 1988; 24: 1139–1150.

    PubMed  Google Scholar 

  19. Wienhard K, Herholz K, Coenen HH, Rudolf J, Kling P, Stöcklin G, Heiss W-D. Increased amino acid transport into brain tumors measured by PET ofl-(2-18F)fluorotyrosine.J Nucl Med 1991; 32: 1338–1346.

    PubMed  Google Scholar 

  20. Schober O, Meyer G-J, Stolke D, Hundeshagen H. Brain tumor imaging using C-11-laelledl-methionine andd-methionine.J Nucl Med 1985; 26: 98–99.

    PubMed  Google Scholar 

  21. Bergström M, Lundquist H, Ericson K, et al. Comparison of the accumulation kinetics ofl-(methyl-11C)-methionine andd-(methyl-11C)-methionine in brain tumors studied with positron emission tomography.Acta Radiol 1987; 28: 225–229.

    PubMed  Google Scholar 

  22. Ishiwata K, Kubota K, Murakami M, Kubota R, Sasaki T, Ishii S, Senda M. Re-evaluation of amino acid PET studies: Can the protein synthesis rates in brain and tumor tissues be measured in vivo?J Nucl Med 1993; 34: 1936–1943.

    PubMed  Google Scholar 

  23. Patronas NJ, Di Chiro G, Kufta C, Bairamian D, Kornblith PL, Simon R, Larson SM, Prediction of survival in glioma patients by means of positron emission tomography.J Neurosurg 1985: 62: 816–822.

    PubMed  Google Scholar 

  24. Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by[18F] fluorodeoxyglucose and positron emission tomography.Neurology 1982; 32: 1323–1329.

    PubMed  Google Scholar 

  25. Patronas NJ, Brooks RA, DeLaPaz RL, Smith BH, Kornblith PL, Di Chiro G. Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas.AJNR 1983; 4: 533–535.

    PubMed  Google Scholar 

  26. Kim CK, Alavi JB, Alavi A, Reivich M. New grading system of cerebral gliomas using positron emission tomography with F-18 fluorodeoxyglucose.J Neurooncol 1991; 10: 85–91.

    PubMed  Google Scholar 

  27. Derlon JM, Bourdet C, Bustany P, et al. [11C]l-Methionine uptake in gliomas.Neurosurgery 1989; 30: 225–232.

    Google Scholar 

  28. Ogawa, T, Shishido F, Kanno I, et al. Cerebral glioma: evaluation with methionine PET.Radiology 1993; 186: 45–53.

    PubMed  Google Scholar 

  29. Byrne TN. Imaging of gliomas.Semin Oncol 1994; 21: 162–171.

    PubMed  Google Scholar 

  30. Butler AR, Horii SC, Krichef I, et al. Computed tomography in astrocytomas. A statistical analysis of the parameters of malignancy and the positive contrast-enhanced CT scan.Radiology 1978; 129: 433–439.

    PubMed  Google Scholar 

  31. Yoshizumi H, Fujibayashi Y, Kikuchi H. Amino acid transport after transient global ischemia in rats: quantitative autoradiographic study using 3-[125I]iodo-alpha-methyl-l-tyrosine.Nucl Med Biol 1995; 22: 309–313.

    PubMed  Google Scholar 

  32. Dethy S, Goldman S, Blecic S, Luxen A, Levivier M, Hildebrand J. Carbon-11-methionine and fluorine-18-FDG PET study in brain hematoma.J Nucl Med 1994; 35: 1162–1166.

    PubMed  Google Scholar 

  33. Jacobs A, Herholz K, Pietrzyk U, Wagner R, Wienhard K, Heiss W-D. Increased L-11C-methyl-methionine uptake in ischemically compromised brain tissue.J Cereb Blood Flow Metab 1995; 15 Suppl 1: S673.

    Google Scholar 

  34. Welsh FA, Moyer DJ, Harris VA. Regional expression of heat shock protein-70 mRNA and c-fos mRNA following focal ischemia in rat brain.J Cereb Blood Flow Metab 1992; 12: 204–212.

    PubMed  Google Scholar 

  35. Ishii K, Ogawa T, Hatazawa J, et al. Highl-methyl-[11C]methionine uptake in brain abscess: a PET study.J Comput Assist Tomogr 1993; 17: 660–661.

    PubMed  Google Scholar 

  36. Sasaki M, Ichija Y, Kuwabara Y, Otsuka M, et al. Ringlike uptake of [18F]FDG in brain abscess: a PET study.J Comput Assist Tomogr 1990; 14: 486–487.

    PubMed  Google Scholar 

  37. Newsholme P, Newsholme EA. Rates of utilization of glucose, glutamine, and oleate and formation of end-products by mouse peritoneal macrophages in culture.Biochem J 1989; 261: 211–218.

    PubMed  Google Scholar 

  38. Kubota R, Yamada S, Kubota K, et al. Intratumoral distribution of fluorine- l8-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography.J Nucl Med 1992; 33: 1972–1980.

    PubMed  Google Scholar 

  39. Kubota R, Kubota K, Yamada S, Tada M, Takahashi T, Iwata R, Tamahashi N. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG.J Nucl Med 1995; 36: 484–492.

    PubMed  Google Scholar 

  40. Herholz K, Pietrzyk U, Voges J, Schröder R, Halber M, Treuer H, Sturm V, Heiss W-D. Correlation of glucose consumption and tumor cell density in astrocytomas.J Neurosurg 1993; 79: 853–858.

    PubMed  Google Scholar 

  41. Dooms GC, Hecht S, Brant-Zawadzki M, et al. Brain radiation lesions: MR imaging.Radiology 1986; 158: 149–155.

    PubMed  Google Scholar 

  42. Di Chiro G, Oldfield E, Wright DC, et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors.AJR 1988; 150: 189–197.

    PubMed  Google Scholar 

  43. Lilja A, Lundquist H, Olsson Y, et al. Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment induced brain lesions.Acta Radiol 1989; 30: 121–128.

    PubMed  Google Scholar 

  44. Glantz M, Hoffman JM, Coleman RE, et al. Identification of early recurrence of primary central nervous system tumors by [18F]-fluorodeoxyglucose positron emission tomography.Ann Neurol 1991; 29: 347–355.

    PubMed  Google Scholar 

  45. Ogawa T, Kanno I, Shishido F, et al. Clinical value of PET with18F-fluorodeoxyglucose andl-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury.Acta Radiol 1991; 32: 197–202.

    PubMed  Google Scholar 

  46. Janus TJ, Kim E, Tilbury R, Bruner JM, Yung WKA. Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors.Ann Neurol 1993; 33: 540–548.

    PubMed  Google Scholar 

  47. Kahn D, Follett KA, Bushnell DL, Nathan MA, Piper JG, Madsen M, Kirchner PT. Diagnosis of recurrent brain tumor: value of201TI SPET vs18F-fluorodeoxyglucose PET.AJR 1994; 163: 1459–1465.

    PubMed  Google Scholar 

  48. Mosskin S, Ericson K, Hindmarsh T, et al. Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference.Acta Radiol 1989; 30: 225–232.

    PubMed  Google Scholar 

  49. Ancri D, Bassett JY. Diagnosis of cerebral lesions by thallium-201.Radiology 1978; 128: 417–422.

    PubMed  Google Scholar 

  50. Maffioli L, Gasparini M, Chiti A, Gramaglia A, Mongioj V, Pozzi A, Bombardieri E. Clinical role of technetium-99m sestamibi single-photon emission tomography in evaluating pretreated patients with brain tumors.Eur J Nucl Med 1996; 23: 308–311.

    PubMed  Google Scholar 

  51. Black KL, Hawkins RA, Kim KT, Becker DP, Lerner C, Marciano D. Use of thallium-201 SPECT to quantitate malignancy grade of gliomas.J Neurosurg 1989; 71: 342–346.

    PubMed  Google Scholar 

  52. Oriuchi N, Tomiyoshi K, Inoue T, et al. Independent thallium-201 accumulation and fluorine- l8-fluorodeoxyglucose metabolism in glioma.J Nucl Med 1996; 37: 457–462.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwert, T., Morgenroth, C., Woesler, B. et al. Uptake of iodine-123-α-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med 23, 1345–1353 (1996). https://doi.org/10.1007/BF01367590

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01367590

Key words

Navigation