Skip to main content
Log in

A non-negative fast multiplicative algorithm in 3D scatter-compensated SPET reconstruction

  • Original article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Single-photon emission tomographic (SPET) reconstruction can be improved, especially for noisy images, by using the iterative expectation-maximization of the maximum-likelihood (EM-ML) algorithm. Its application to clinical routine is, however, hampered by the high number of iterations necessary to achieve acceptable results. Therefore various methods have been developed to accelerate the EM-ML algorithm. In this paper a new accelerated EM-ML-like multiplicative algorithm is proposed for SPET reconstruction. Contrary to some other accelerating methods, it preserves two of the most important properties of the EM-ML, namely pixel positivity inside the patient body and null activity outside. The convergence speed is improved by a factor which can reach 100 in high spatial frequency or low count regions. Good estimates in the low count region are obtained without any smoothing, even at typical routine clinical count rates. The algorithm used in conjunction with the 3D effective one scatter path model provides high-quality SPET images and accurate quantitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography.IEEE Trans Med Imaging 1982; 2: 113–122.

    Google Scholar 

  2. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography.J Comput Assist Tomogr 1984; 8: 306–316.

    PubMed  Google Scholar 

  3. Nuyts J, Suetens P, Mortelmans L. Acceleration of maximum likelihood reconstruction, using frequency amplification and attenuation compensation.IEEE Trans Med Imaging 1993; 12: 643–652.

    Google Scholar 

  4. Murase K, Tanada S, Sugawara Y, Tauxe WN, Hamamoto K. An evaluation of the accelerated expectation maximization algorithms for single-photon emission tomography image reconstruction.Eur J Nucl Med 1994; 21: 597–603.

    PubMed  Google Scholar 

  5. Bowsher JE, Floyd CE Jr. Treatment of Compton scattering in maximum likelihood, expectation-maximization reconstruction of SPELT images.J Nucl Med 1991; 32: 1285–1291.

    PubMed  Google Scholar 

  6. Lewitt RM, Muehllehner G. Accelerated iterative reconstruction for positron emission tomography based on the EM algorithm for maximum likelihood estimation.IEEE Trans Med Imaging 1986; 5: 16–22.

    Google Scholar 

  7. Tanaka E. A fast reconstruction algorithm for stationary positron emission tomography based on modified EM algorithm.IEEE Trans Med Imaging 1987; 6: 98–105.

    Google Scholar 

  8. Metz CE, Chen CT. On the acceleration of maximum likelihood algorithms.SPIE 1988; 914: 344–349.

    Google Scholar 

  9. Meilijson I. A fast improvement to the EM algorithm on its own terms.J R Statist Soc 1989; 51: 127–138.

    Google Scholar 

  10. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data.IEEE Trans Med Imaging 1994; 13: 601–609.

    Google Scholar 

  11. Floyd CE Jr, Jaszczak RJ, Greer KL, Coleman RE. Deconvolution of Compton scatter in SPELT.J Nucl Med 1985; 26: 403–408.

    PubMed  Google Scholar 

  12. Axelsson B, Msaki P, Israelsson A. Subtraction of Comptonscattered photons in single-photon emission computerized tomography.J Nucl Med 1984; 25: 490–494.

    PubMed  Google Scholar 

  13. Msaki P, Axelsson B, Dahl CM, Larsson SA. Generalized scatter correction method in SPELT using point scatter distribution functions.J Nucl Med 1987; 28: 1861–1869.

    PubMed  Google Scholar 

  14. Ljungberg M, Strand SE. Attenuation and scatter correction in SPELT for sources in a nonhomogeneous object: a Monte Carlo study.J Nucl Med 1991; 32: 1278–1284.

    PubMed  Google Scholar 

  15. Yanch JC, Dobrzeniecki AB, Ramanathan C, Behrman R. Physically realistic Monte Carlo simulation of source collimator and tomographic data acquisition for emission computed tomography.Phys Med Biol 1992; 37: 853–870.

    Google Scholar 

  16. Walrand S, van Elmbt L, Pauwels S. Quantitation of SPELT using an effective model of the scattering.Phys Med Biol 1994; 39: 719–734.

    PubMed  Google Scholar 

  17. Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPELT.J Nucl Med 1994; 35: 360–367.

    PubMed  Google Scholar 

  18. Walrand S, Toussaint MS, Schmitz H, et al. Image improvement in111In clinical tomographic studies using a false likelihood algorithm.Ear J Nucl Med 1995; 22: 889.

    Google Scholar 

  19. Barrett HH, Wilson DW Tsui BMW. Noise properties of the EM algorithm.J Nucl Med 1994; 39: 833–846.

    Google Scholar 

  20. Liow JS, Strother SC. Practical tradeoffs between noise, quantitation and number of iterations for maximum likelihood based reconstruction.IEEE Trans Med Imaging 1991; 10: 563–571.

    Google Scholar 

  21. Ollinger JM. Maximum-likelihood reconstruction of transmission images in emission computed tomography via the EM algorithm.IEEE Trans Med Imaging 1994; 13: 89–101.

    Google Scholar 

  22. Tanaka E. Improved iterative image reconstruction with automatic noise artifact suppression.IEEE Trans Med Imaging 1992;11:21–27.

    Google Scholar 

  23. Liew SC, Hasegawa BH, Brown JK, Lang TE Noise propagation in SPELT images reconstructed using an iterative maximum likelihood algorithm.Phys Med Biol 1993; 38: 1713–1726.

    PubMed  Google Scholar 

  24. Snyder D, Miller M, Thomas L, Politte DG. Noise and edge artifacts in maximum likelihood reconstructions for emission tomography.IEEE Trans Med Imaging 1987; 6: 228–238.

    Google Scholar 

  25. Veklerov E, Llacer J. Stopping rule for the MLE algorithm based on statistical hypothesis testing.IEEE Trans Med Imaging 1987; 6: 313–319.

    Google Scholar 

  26. Llacer J, Veklerov E. Feasible images and practical stopping rules for iterative algorithms in emission tomography.IEEE Trans Med Imaging 1989; 8: 186–193.

    Google Scholar 

  27. Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing.IEEE Trans Med Imaging 1990; 9: 439–446.

    Google Scholar 

  28. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in c.The art of scientific computing. Cambridge New York Victoria: Cambridge University Press; 1992: 55–58, 85.

    Google Scholar 

  29. Larsson S. Gamma camera emission tomography.Acta Radiol Suppl 363: 32.

  30. Jamar F, Fiasse R, Leners N, Pauwels S. Somatostatin receptor imaging with111In-pentetreotide in gastroenteropancreatic neuroendocrine tumors: safety, efficacy and impact on patient management.J Nucl Med 1995; 36: 542–549.

    PubMed  Google Scholar 

  31. Ziemons K, Herzog H, Bosetti P, Feinendegen LE. Iterative image reconstruction with weighted pixel contributions to projection elements.Eur J Nucl Med 1992; 19: 587.

    Google Scholar 

  32. Schwinger RB, Cool SL, King MA. Area weighted convolution interpolation for data reprojection in single photon emission computed tomography.Med Phys 1986; 13: 350–353.

    PubMed  Google Scholar 

  33. Schmidlin P. Improved iterative image reconstruction using variable projection binning and abbreviated convolution.Eur J Nucl Med 1994; 21: 930–936.

    PubMed  Google Scholar 

  34. Lange K, Balm M, Little R. A theoretical study of some maximum likelihood algorithms for emission and transmission tomography.IEEE Trans Med Imaging 1987; 6: 106–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walrand, S.H., van Elmbt, L.R. & Pauwels, S. A non-negative fast multiplicative algorithm in 3D scatter-compensated SPET reconstruction. Eur J Nucl Med 23, 1521–1526 (1996). https://doi.org/10.1007/BF01254478

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01254478

Key words:

Navigation