Skip to main content
Log in

Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) is now primarily used in oncological indication owing to the successful application of fluorine-18 fluorodeoxyglucose (FDG) in an increasing number of clinical indications at different stages of diagnosis, and for staging and follow-up. This review first considers the biological characteristics of FDG and then discusses methodological considerations regarding its use. Clinical indications are considered, and the results achieved in respect of various organs and tumour types are reviewed in depth. The review concludes with a brief consideration of the ways in which clinical PET might be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Phelps ME, Mazziotta J, Schelbert HR.Positron emission tomography and autoradiography. New York: Raven Press, 1986.

    Google Scholar 

  2. Wagner HN Jr. Nuclear medicine; what it is and what it does. In: Wagner HN Jr, Szabo Z, Buchanan JW eds.Principles of nuclear medicine. New York: Williams-Saunders; 1995: 1–8.

    Google Scholar 

  3. Phelps ME, Huang SC, Hoffman EJ et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method.Ann Neurol 1979; 6: 371–388.

    Google Scholar 

  4. Reivich M, Kuhl DE, Wolf A et al. The (18F)-fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man.Circ Res 1979; 44: 127–137.

    Google Scholar 

  5. Wagner HN Jr. Clinical PET: its time has come.J Nucl Med 1991; 32: 561–564.

    Google Scholar 

  6. Wahl RL. Positron emission tomography: application in oncology. In: Murray ICP, Ell PJ, eds.Nuclear medicine in clinical diagnosis and treatment. London: Churchill Livingstone; 1995: 801–820.

    Google Scholar 

  7. Strauss LG, Conti PS. The applications of PET in clinical oncology.J Nucl Med 1991; 32: 623–648.

    Google Scholar 

  8. Reske SN, Bares R, Bull U et al. Klinkische Wertigkeit der Positronen-Emissions-Tomographie (PET) bei onkologischen Fragestellungew Ergebnisse einer interdisziplindren Konsensuskonferenz (clinical value of positron emission tomography in oncology: results of an interdisciplinary consensus conference).Nucl Med 1996; 35: 42–52.

    Google Scholar 

  9. Warburg O, Wind F, Neglers E. On the metabolism of tumors in the body. In: Warburg O, ed.Metabolism of tumors. London: Constable; 1930: 254–270.

    Google Scholar 

  10. Som P, Atkins HL, Bandoypadhyay D, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-d-glucose (F-18): nontoxic tracer for rapid tumor detection.J Nucl Med 1980; 21: 670–675.

    Google Scholar 

  11. Di Chiro G. Positron emission tomography using18F-fluoro-deoxyglucose in brain tumors. A powerful diagnostic and prognostic tool.Invest Radial 1986; 22: 360–371.

    Google Scholar 

  12. Warburg O. The metabolism of tumors. New York: Smith RR; 1931: 129–169.

    Google Scholar 

  13. Warburg O. On the origin of cancer cells.Science 1956; 123: 309–314.

    Google Scholar 

  14. Hatanaka M. Transport of sugar in tumor cell membranes.Biochem Biophys Acta 1974; 355: 77–104.

    Google Scholar 

  15. Hiraki Y, Rosen OM, Birnbaum MJ. Growth factors rapidly induce expression of the glucose transporter gene.J Biol Chem 1988; 27: 13 655–13 662.

    Google Scholar 

  16. Hiraki Y, De Herreros AG, Birnbaum MJ. Transformation stimulates glucose transporter gene expression in the absence of proteine kinase C.Proc Natl Acad Sci USA 1989; 86: 8252–8256.

    Google Scholar 

  17. Murakami T, Niushiyama T, Shirotani T et al. Identification of two enhancer elements in the gene encoding from the mouse which are responsive to serum, growth factor and oncogenes.J Biol Chem 1992; 267: 9300–9306.

    Google Scholar 

  18. Shawver LK, Olson SA, White MK, Weber MH. Degradation and biosynthesis of the glucose transporter protein in chicken embryo fibroblasts transformed by thesrc oncogene.Mol Cell Biol 1987; 7: 2112–2118.

    Google Scholar 

  19. Birnbaum MJ, Haspel HC, Rosen OM. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science 1987; 235: 1495–1498.

    Google Scholar 

  20. Slater DW, Baldwin SA, Lienhard GE, Weber MJ. Proteins antigenically related to the human erythrocyte glucose transporter in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts.Proc Natl Acad Sci USA 1982; 79: 1540–1544.

    Google Scholar 

  21. Godwin AK, Lieberman MW. Early and late responses to induction ofras T24 expression in Rat-1 cells.Oncogene 1990; 5: 1231–1241.

    Google Scholar 

  22. Godwin AK, Lieberman MW. Elevation of glucose transporter, C-myc and transin ARN levels by Ha-rasT24 is independent of its effect on the cell cycle.Mol Carcinogen 1991; 4: 275–285.

    Google Scholar 

  23. Sistonen L, Holtta E, Makela TP et al. The cellular response to induction of the P21c-Ha-ras oncoprotein includes stimulation ofjun gene expression.EMBO J 1989; 9: 815–821.

    Google Scholar 

  24. Flier JS, Mueckler MM, Usher P, Lodish HE. Elevated levels of glucose transport and transporter messenger RNA are induced byras andsarc oncogenes.Science 1987; 235: 1492–1495.

    Google Scholar 

  25. Hartung T, Büchler M, Grimmel S et al. Correlation of increased FDG-uptake and elevated expression of glucose transporter 1 gene in human pancreatic carcinoma.Eur J Nucl Med 1994; 21: S17.

    Google Scholar 

  26. Yamamoto T, Seino Y, Fukumoto H et al. Overexpression of facilitated glucose transporter genes in human cancer.Biochem Biophys Res Commun 1990; 170: 223–230.

    Google Scholar 

  27. Nishioka T, Oda Y, Seino Y et al. Distribution of the glucose transporters in human brain tumors.Cancer Res 1992; 52: 3972–3979.

    Google Scholar 

  28. Su TS, Tsai TF, Chi CW et al. Elevation of facilitated glucose transporter messenger RNA in human hepatocellular carcinoma.Hepatology 1990; 11: 118–122.

    Google Scholar 

  29. Monakhov NK, Neistadt EL, Shavlovskii MM et al. Physicochemical properties and isoenzyme composition of hexokinase for normal and malignant human tissues.J Natl Cancer Inst 1978; 61: 27–34.

    Google Scholar 

  30. Parry DM, Pederson PL. Intracellular localization and properties of particulate hexokinase in the Novikoff ascites tumor: evidence for an outer mitochondrial membrane location.J Biol Chem 1983; 258: 10 904–10 912.

    Google Scholar 

  31. Gallagher BM, Fowler JS, Gutterson NI et al. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of F-18-2-deoxy-2-fluoro-d-glucose.J Nucl Med 1989; 19: 1154–1161.

    Google Scholar 

  32. Sokoloff L, Reivich M, Kennedy C et al. The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values on the conscious and anesthetized albino rat.J Neurochem 1977; 28: 897–916.

    Google Scholar 

  33. Di Chiro G, De La Paz RL, Brooks RA et al. Glucose utilization of cerebral gliomas measured by (18F)fluorodeoxyglucose and positron emission tomography.Neurology 1982; 32: 1323–1329.

    Google Scholar 

  34. Okazumi S, Isono K, Enomoto K et al. Evaluation of liver tumors using18F-fluorodeoxyglucose PET: characterization of the tumor and assessment of the effect of the treatment.J Nucl Med 1992; 33: 333–339.

    Google Scholar 

  35. Rodriguez M, Rehn S, Ahlstrom H et al. Predicting malignancy grade with PET in non-Hodgkin's lymphoma.J Nucl Med 1995; 36: 1790–1796.

    Google Scholar 

  36. Okada J, Yoshikawa K, Itami M et al. Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity.J Nucl Med 1992; 33: 325–329.

    Google Scholar 

  37. Adler LP, Blair HF, Williams RP et al. Grading liposarcomas with PET using18F-FDG.J Comput Assist Tomogr 1990; 14: 960–962.

    Google Scholar 

  38. Adler LP, Blair HF, Makley JT et al. Noninvasive grading of muskuloskeletal tumors using PET.J Nucl Med 1991; 32: 1508–1512.

    Google Scholar 

  39. Sweeney MJ, Ashmore J, Morris HP, Klemi A. Comparative biochemistry of hepatomas. IV. Isotopes studies of glucose and fructose metabolism in liver tumors of different growth rates.Cancer Res 1963; 25: 995–1002.

    Google Scholar 

  40. Haberkorn U, Strauss LG, Reisser C et al. Glucose uptake, perfusion, and cell proliferation in head and neck tumors: relation of positron emission tomography to flow cytometry.J Nucl Med 1991; 32: 1548–1555.

    Google Scholar 

  41. Higashi K, Clavo AC, Wahl RL. Does FDG uptake measure prolifetrative activity of human cancer cells? In vitro comparison with DNA flow cytometry and tritiated thymidine uptake.J Nucl Med 1993; 34: 414–419.

    Google Scholar 

  42. Kubota R, Yamada S, Kubota K et al. Intratumoral distribution of flurorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiographic comparison with FDG.J Nucl Med 1992; 33: 1972–1980.

    Google Scholar 

  43. Minn H, Joensuu H, Ahonen A et al. Fluorodeoxyglucose imaging: a method to assess the proliferative activity of human cancer in vivo. Comparison with DNA flow cytometry in head and neck tumors.Cancer 1988; 61: 1776–1781.

    Google Scholar 

  44. Minn H, Clavo AC, Grenman R et al. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous-cell carcinoma of the head and neck.J Nucl Med 1995; 36: 252–258.

    Google Scholar 

  45. Minn H, Leskinen-Kallio S, Lindholm P et al.18F-fluorodeoxyglucose uptake in tumors: kinetic vs. steady-state methods with reference to plasma insulin.J Comput Assist Tomog 1993; 17: 115–123.

    Google Scholar 

  46. Wahl RL, Clavo AC. Effects of hypoxia on cultured human tumor cell uptake of thymidine,l-methionine and FDG.J Nuel Med 1993; 34: 73P.

    Google Scholar 

  47. Lindholm P, Minn H, Leskinen-Kallio S, Bergman J. Influence of the blood glucose concentration on FDG uptake in cancer. A PET study.J Nucl Med 1993; 34: 1–6.

    Google Scholar 

  48. Yao WJ, Hoh CK, Hawkins RA et al. Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines.J Nucl Med 1995; 36: 794–799.

    Google Scholar 

  49. Wahl RL, Quint LE, Greenough RL et al. Staging of mediastinal non-small cell lung cancer with FDG-PET, CT and fusion images: preliminary prospective evaluation.Radiology 1994; 191: 371–377.

    Google Scholar 

  50. Kubota K, Ishiwata K, Kubota R et al. Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine-l8-fluorodeoxyuridine,l-(methyl-14C)methionine, (6-3H)thymidine, and gallium-67.J Nucl Med 1991; 32: 2118–2123.

    Google Scholar 

  51. Kubota R, Kubota K, Yamada S et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG.J Nucl Med 1995; 36: 484–492.

    Google Scholar 

  52. Ishiwata K, Ido T, Honda C et al. 4-Borono-2-(18F)fluoro-D,l-phenylalanine: a possible tracer for melanoma diagnosis with PET.Int J Radiat Appl Instrum 1992; 19: 311–318.

    Google Scholar 

  53. Ishiwata K, Vaalburg W, Elsinga PH et al. Metabolic studies withl-(1-14C)tyrosine for the investigation of a kinetic model to measure protein synthesis rates with PET.J Nucl Med 1988; 29: 524–529.

    Google Scholar 

  54. Larson SM, Grunbaum Z, Rasey J. Positron imaging feasibility studies: selective tumor concentration of3H-thymidine,3H-uridine, and14C-2-deoxyglucose.Radiology 1980; 134: 771–773.

    Google Scholar 

  55. Shields AT, Mankoff D, Graham MM et al. Analysis of 2-carbon-11-thymidine blood metabolites in PET imaging.J Nucl Med 1996; 37: 290–296.

    Google Scholar 

  56. Willemsen ATM, Vanwaarde A, Paans AMJ et al. In vivo protein synthesis rate determination in primary or recurrent brain tumors usingl-[1-C-11]thyrosine and PET.J Nucl Med 1995; 36: 411–419.

    Google Scholar 

  57. DeGrado TR, Turkington TG, Williams JJ et al. Performance characteristics of a whole-body PET scanner.J Nucl Med 1994; 35: 1398–1406.

    Google Scholar 

  58. Wienhard K, Dahlbom M, Eriksson L et al. The ECAT EXACT high resolution 1 performance of a new high resolution positron scanner.J Comput Assist Tomogr 1994; 18: 110–118.

    Google Scholar 

  59. Karp JS, Muehllehner G, Mankoff DA et al. Continuous-slice PENN-PET: a positron tomograph with volume imaging capability.J Nucl Med 1990; 31: 617–627.

    Google Scholar 

  60. Macfarlane DJ, Cotton L, Ackermann RJ et al. Triple-head SPECT with 2-[fluorine-18]fluoro-2-deoxy-d-glucose (FDG): initial evaluation in oncology and comparison with FDG PET.Radiology 1995; 194: 425–429.

    Google Scholar 

  61. Glass EC, Nelleman P, Hines H et al. Initial coincidence imaging experience with a SPECT/PET dual head camera.J Nucl Med 1996; 37: 53P.

    Google Scholar 

  62. Glaspy JA, Hawkins R, Hoh CK, Phelps ME. Use of positron emission tomography in oncology.Oncology 1993; 7: 41–50.

    Google Scholar 

  63. Karp JS, Muehllehner G, He Qu et al. Singles transmission in volume imaging PET with a137Cs source.Phys Med Biol 1995; 40: 929–944.

    Google Scholar 

  64. Lowe VJ, DeLong DM, Hoffman JM et al. Optimum scanning protocol for FDG-PET evaluation of pulmonary malignancy.J Nucl Med 1995; 36: 883–887.

    Google Scholar 

  65. Yu JN, Fahey FH, Harkness BA et al. Evaluation of emission-transmission registration in thoracic PET.J Nucl Med 1994; 35: 1777–1780.

    Google Scholar 

  66. Yu JN, Fahey FH, Gage HD et al. Intermodality, retrospective image registration in the thorax.J Nucl Med 1995; 36: 2333–2338.

    Google Scholar 

  67. Wu HM, Huang SC, Choi Y et al. A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue.J Nucl Med 1995; 36: 297–306.

    Google Scholar 

  68. Hooper PK, Meikle SR, Eberl S, Fulham MT. Validation of postinjection transmission measurements for attenuation correction in neurological FDG-PET studies.J Nucl Med 1996; 37: 128–136.

    Google Scholar 

  69. Smith RJ, Karp JS. Attenuation correction in whole-body PET using short transmission scans.J Nucl Med 1996; 37: 172P.

    Google Scholar 

  70. Lowe VJ, Hoffman JM, DeLong DM et al. Semiquantitative and visual analysis of FDG-PET images in pulmonary abnormalities.J Nucl Med 1994; 35: 1771–1776.

    Google Scholar 

  71. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations.J Cereb Blood Flow Metab 1985; 5: 584–590.

    Google Scholar 

  72. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-(fluorine-18)-fluoro-2-deoxy-d-glucose: variations with body weight and a method for correction.Radiology 1993; 189: 847–850.

    Google Scholar 

  73. Fischman AJ, Alpert NM. FDG-PET in oncology: there's more to it than looking at pictures.J Nucl Med 1993; 34: 6–11.

    Google Scholar 

  74. Minn H, Zasadny KR, Quint LE et al. Lung cancer: reproducibility of quantitative measurements for evaluating 2-[F-18]fluoro-2-deoxy-d-glucose uptake at PET.Radiology 1995; 196: 167–173.

    Google Scholar 

  75. Gatenby RA. Potential role of FDG-PET imaging in understanding tumor-host interaction.J Nucl Med 1995; 36: 893–899.

    Google Scholar 

  76. Lindholm P, Leskinen-Kallio S, Kirvela O et al. Head and neck cancer: effect of food ingestion on uptake of C-11 methionine.Radiology 1994; 193: 863–867.

    Google Scholar 

  77. Minn H, Nuutila P, Lindholm P et al. In vivo effect of insulin on tumor and skeletal muscle glucose metabolism in patients with lymphoma.Cancer 1994; 73: 1490–1498.

    Google Scholar 

  78. Keyes JW Jr. SUV: standard uptake or silly useless value?J Nucl Med 1995; 36: 1836–1839.

    Google Scholar 

  79. Bischof-Delaloye A, Wahl RL. How high a level of FDG abdominal activity is considered normal?J Nucl Med 1995; 36: 106P.

    Google Scholar 

  80. Meyer MA. Diffusely increased colonic F-18 FDG uptake in acute enterocolitis.Clin Nucl Med 1995; 20: 434–435.

    Google Scholar 

  81. Pietrzyk Y, Scheidhauver K, Schad A et al. Presurgical visualization of primary breast carcinoma with PET emission and transmission imaging.J Nucl Med 1995; 36: 1882–1884.

    Google Scholar 

  82. Wagner HN Jr. Positron emission tomography at the turn of the century. A perspective.Semin Nucl Med 1992; 22: 285–288.

    Google Scholar 

  83. Hoh CK, Hawkins RA, Glaspy J et al. Cancer detection with whole-body PET using 2-(F-18)-fluoro-2-deoxy-d-glucose.J Comput Assist Tomogr 1993; 17: 582–589.

    Google Scholar 

  84. Lagrange JL, Maublant J, Darcourt J. Positron emission tomography: role of F-18 fluorodeoxyglucose imaging in oncology.Bull Cancer (Paris) 1995; 82: 611–622.

    Google Scholar 

  85. Rigo P, Paulus P, Jerusalem G et al. Indications cliniques de la tomographie à positons au 18-FDG en oncologie. Expérience préliminaire et revue de la littérature.Médecine Nucléaire - Imagerie Fonctionnelle et Métabolique 1995; 19: 73–89.

    Google Scholar 

  86. Shulkin BL, Mitchell DS, Ungar DR et al. Neoplasms in a pediatric population: 2-[F-18]-fluoro-2-deoxy-d-glucose PET studies.Radiology 1995; 194: 495–500.

    Google Scholar 

  87. Kole AC, Nieweg OE, Pruim J et al. Whole body PET with FDG: detection of unknown primary tumors.J Nucl Med 1995; 36: 57P.

    Google Scholar 

  88. Kim EE, Chung SK, Haynie TP et al. Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET.Radiographics 1992; 12: 269–279.

    Google Scholar 

  89. Di Chiro G, Brooks RA. PET-FDG of untreated and treated cerebral gliomas.J Nucl Med 1988; 29: 421–422.

    Google Scholar 

  90. Di Chiro G, Oldfield E, Wright DC et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies.Ant J Roentgenol 1988; 150: 189–197.

    Google Scholar 

  91. Strauss LG, Clorius JH, Schlag P et al. Recurrence of colorectal tumors: PET evaluation.Radiology 1989; 170: 329–332

    Google Scholar 

  92. Coleman RE, Cascade E, Gupta NC et al. Clinical application and economic implications of PET in the assessment of solitary pulmonary nodules. A retrospective study. Abstract from the 1994 ICP Meeting, Institute for Clinical PET, Fairfax, Virginia.

    Google Scholar 

  93. Alavi JB, Alavi A, Chawluk J et al. Positron emission tomography in patients with glioma: a predictor of prognosis.Cancer 1988; 62: 1074–1078.

    Google Scholar 

  94. Reisser C, Haberkorn U, Strauss LG. The relevance of positron emission tomography for the diagnosis and treatment of head and neck tumors.J Otolaryngol 1993; 22: 231–238.

    Google Scholar 

  95. Quint LE, Francis IR, Wahl RL et al. Preoperative staging of non-small-cell carcinoma of the lung: imaging methods.Am J Roentgenol 1995; 164: 1349–1359.

    Google Scholar 

  96. Khouri NF et al. The solitary pulmonary nodule, assessment, diagnosis and management.Chest 1987; 91: 128–133.

    Google Scholar 

  97. Midthun DE, Swensen SJ, Pert JR. Clinical strategies for solitary pulmonary nodules.Ann Rev Med 1992; 93: 195–208.

    Google Scholar 

  98. Kubota K, Matsuzawa T, Fujiwara T et al. Differential diagnosis of lung tumor with positron emission tomography: a prospective study.J Nucl Med 1990; 31: 1927–1992.

    Google Scholar 

  99. Dewan NA, Gupta NC, Redepenning LS et al. Diagnostic efficacy of PET-FDG imaging in solitary pulmonary nodules.Chest 1993; 104: 997–1002.

    Google Scholar 

  100. Patz EL, Lowe VJ, Hoffman JM et al. Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning.Radiology 1993; 188: 487–490.

    Google Scholar 

  101. Slosman DO, Spiliopoulos A, Consort F et al. Satellite PET and lung cancer: a prospective study in surgical patients.Nucl Med Commun 1993; 14: 955–961.

    Google Scholar 

  102. Gupta NC, Frank AR, Dewan NA et al. Solitary pulmonary nodules: detection of malignancy with PET with 2-(F-18)fluoro-2-deoxy-d-glucose.Radiology 1992; 184: 441–444.

    Google Scholar 

  103. Gupta N, Chandramouli B, Reeb S, Dewan N. Diagnostic evaluation of solitary pulmonary nodules using PET-FDG imaging.J Nucl Med 1994; 35: 76P.

    Google Scholar 

  104. Scott WJ, Schwabe JL, Gupta NC et al. Positron emission tomography of lung tumors and mediastinal lymph nodes using [18F]fluorodeoxyglucose.Ann Thorac Surg 1994; 58: 698–703.

    Google Scholar 

  105. Dewan NA, Reeb SD, Gupta NC et al. PET-FDG imaging and transthoracic needle lung aspiration biopsy in evaluation of pulmonary lesions. A comparative risk-benefit analysis.Chest 1995; 108: 441–446.

    Google Scholar 

  106. Bury T, Paulus P, Corhay JL et al. Apport diagnostique de la tomographie à émission de positons dans l'évaluation d'une opacité pulmonaire unique: étude préliminaire chez 30 patients.Médecine Nucléaire, Imagerie Fonctionnelle et Métabolique 1996; 20: 77–82.

    Google Scholar 

  107. Bury T, Dowlati A, Paulus P et al. Evaluation of the solitary pulmonary nodule by positron emission tomography imaging.Eur Respir J 1996; 9: 410–414.

    Google Scholar 

  108. Bury T, Corhay JL, Paulus P et al. Evaluation du nodule pulmonaire solitaire par la tomographie à émission de positons au 18-FDG. Rev Mal Respir 1995; 12: R81.

    Google Scholar 

  109. Kazerooni EA, Lim FT, Mikhail A, Martinez FJ. Risk of pneumothorax in CT-guided transthoracic needle aspiration biopsy of the lung.Radiology 1996; 198: 371–375.

    Google Scholar 

  110. Berlangieri SU, Scott AM, Knight S et al. Mediastinal lymph node staging in non-small cell lung carcinoma: comparison of F-18-FDG positron emission tomography with surgical pathology.Eur J Nucl Med 1994; 21: S62.

    Google Scholar 

  111. Sasaki M, Ichiya Y, Kuwabara Y et al. The usefulness of FDG-PET for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer. A comparative study with x-ray CT.Eur J Nucl Med 1994; 21: S189.

    Google Scholar 

  112. Patz EF, Lowe VJ, Hoffman JM et al. Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-(F-18)2-deoxy-d-glucose.Radiology 1994; 191: 379–382.

    Google Scholar 

  113. Patz EF Jr, Lowe VJ, Goodman PC, Herndon J. Thoracic nodal staging with PET imaging with 18FDG in patients with bronchogenic carcinoma.Chest 1995; 108: 1617–1621.

    Google Scholar 

  114. Buchpiguel CA, Tse K, Alavi A et al. Use of quantitative FDG-PET whole body imaging in staging lung cancer. A comparison with CT.Eur J Nucl Med 1994; 21: S61.

    Google Scholar 

  115. Lewis P, Griffin S, Marsden P et al. Whole-body18F-fluoro-deoxyglucose positron emission tomography in preoperative evaluation of lung cancer.Lancet 1994; 344: 1265–1266.

    Google Scholar 

  116. Chin R Jr, Ward R, Keyes JW et al. Mediastinal staging of non-small-cell lung cancer with positron emission tomography.Am J Resp Crit Care Med 1995; 152: 2090–2096.

    Google Scholar 

  117. Valk PE, Pounds TR, Hopkins DM et al. Staging non-small cell lung cancer by whole-body positron emission imaging. Ann Thorac Surg 1995; 60: 1573–1582.

    Google Scholar 

  118. Bury T, Dowlati A, Paulus P et al. Positron emission tomography versus computed tomography in the staging of mediastinal non-small cell lung cancer.Eur Respir J 1995; 22: 846.

    Google Scholar 

  119. Bury T, Corhay JL, Paulus P et al. La tomographie à émission de positons dans l'évaluation de l'extension ganglionnaire intrathoracique du cancer bronchique non grain d'avoine: étude préliminaire chez 30 patients.Rev Mal Respir 1996; 9: 410–414.

    Google Scholar 

  120. Bury T, Paulus P, Benoit T et al. Positron emission tomography versus computed tomography in the staging of mediastinal non-small cell lung cancer.Eur J Nucl Med 1995; 22: 846.

    Google Scholar 

  121. Boland GW, Goldberg MA, Lee MJ et al. Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2-[F-18]-fluoro-deoxy-d-glucose.Radiology 1995; 194: 131–134.

    Google Scholar 

  122. Bury T, Dowlati A, Paulus P et al. Staging of non small cell lung cancer by whole-body18FDG-PET.Eur J Nucl Med 1996; 23: 204–206.

    Google Scholar 

  123. Larcos G, Maisey MN. FDG-PET screening for cerebral metastasis in patients with suspected malignancy.Nucl Med Commun 1996; 17: 197–198.

    Google Scholar 

  124. Abe Y, Matsuzawa T, Fujiwara T et al. Clinical assessment of therapeutic effects on cancer using18F-2-fluoro-2-deoxy-d-glucose and positron emission tomography: preliminary study of lung cancer.Intl J Radiat Oncol Biol Phys 1990; 19: 1005–1010.

    Google Scholar 

  125. Knopp MV, Bischoff H, Rimac A et al. Clinical utility of positron emission tomography with FDG for chemotherapy response monitoring - a correlative study of patients with small cell lung cancer.J Nucl Med 1994; 35: 75P.

  126. Hubner KF, Smith GT, Raja S et al. Positron emission tomography for evaluating chest masses.J Nucl Med 1994; 35: 220P.

    Google Scholar 

  127. Hubner KF, Buonocore E, Singh SK et al. Characterization of chest masses by FDG positron emission tomography.Clin Nucl Med 1995; 20: 293–298.

    Google Scholar 

  128. Inoue T, Kim EE, Komaki R et al. Detecting recurrent or residual lung cancer with FDG-PET.J Nucl Med 1995; 36: 788–793.

    Google Scholar 

  129. Duhaylongsod FG, Lowe VJ, Patz EF et al. Detection of primary and recurrent lung cancer by means of F-18 fluorodeoxyglucose positron emission tomography (FDG-PET).J Thorac Cardiovasc Surg 1995; 110: 139–140.

    Google Scholar 

  130. Frank A, Lefkowitz D, Jaeger S et al. Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings.Int J Radiat Oncol Biol Phys 1995; 32: 1495–1512.

    Google Scholar 

  131. Bury T, Paulus P, Weber T et al. Potential interest of pleural diseases evaluation with FDG-PET imaging: preliminary report.Eur J Nucl Med 1996; 23: 1186.

    Google Scholar 

  132. Lowe VJ, Patz E, Harris L et al. FDG-PET evaluation of pleural abnormalities.J Nucl Med 1994; 35: 228P.

    Google Scholar 

  133. Rege SD, Hoh CK, Glaspy JA et al. Imaging of pulmonary mass lesions with whole-body positron emission tomography and fluorodeoxyglucose.Cancer 1993; 72: 82–90.

    Google Scholar 

  134. Rhodes CG, Hughes JM. Pulmonary studies using positron emission tomography.Eur Respir J 1995; 8: 1001–1017.

    Google Scholar 

  135. Slosman DO, Spiliopoulos A, Keller A et al. Quantitative metabolic PET imaging of a plasma cell granuloma.J Thorac Imaging 1994; 9: 116–119.

    Google Scholar 

  136. Tse KKM, Buchpiguel CA, Alavi JB et al. Detection and semi-quantitative measurement of lung cancer metabolic activity by whole body PET FDG imaging.J Nucl Med 1994; 35: 226P.

    Google Scholar 

  137. August DA, Ottow RT, Sugarbaker PH. Clinical perspectives on human colorectal cancer metastases.Cancer Metastasis Rev 1984; 3: 303–324.

    Google Scholar 

  138. Moertel CG et al. An evaluation of the carcinoembryonic antigen (CEA) test for monitoring patients with resected colon cancer.JAMA 1993; 270: 943–947.

    Google Scholar 

  139. Chen YM et al. Recurrent colorectal carcinoma. Evaluation with barium enema examination and CT.Radiology 1987; 163: 307–310.

    Google Scholar 

  140. Moss MA. Imaging of colorectal carcinoma.Radiology 1989; 170: 308–310.

    Google Scholar 

  141. Yonekura Y, Benua RS, Brill AB et al. Increased accumulation of 2-deoxy-2-(18F)fluoro-d-glucose in liver metastases from colon carcinoma.J Nucl Med 1982; 23: 1133–1137.

    Google Scholar 

  142. Falk PM, Gupta NC, Thorson AG et al. Positron emission tomography for preoperative staging of colorectal carcinoma.Dis Colon Rectum 1994; 37: 153–156.

    Google Scholar 

  143. Gupta NC, Falk PM, Frank AL et al. Pre-operative staging of colorectal carcinoma using positron emission tomography.Nebr Med J 1993; 30–35.

  144. Schlag P, Lehner B, Strauss LG et al. Scar or recurrent rectal cancer.Arch Surg 1989; 124: 197–200.

    Google Scholar 

  145. Ito K, Kato T, Tadokoro M et al. Recurrent rectal cancer and scar: differentiation with PET and MR imaging.Radiology 1992; 182: 549–552.

    Google Scholar 

  146. Schiepers C, Penninckx F, De Vadder N et al. Contribution of PET in the diagnosis of recurrent colorectal cancer: comparison with conventional imaging.Eur J Surg Onkol 1995; 21: 517–522.

    Google Scholar 

  147. Grabbe E, Winkler R. Local recurrence after sphincter-saving resection for rectal and rectosigmoid carcinoma: value of various diagnostic methods.Radiology 1985; 155: 305–310.

    Google Scholar 

  148. Beets G, Penninckx F, Schiepers C et al. Clinical value of whole-body positron emission tomography with18F-fluoro-deoxyglucose in recurrent colorectal cancer.Br J Surg 1994; 81: 1666–1671.

    Google Scholar 

  149. Gupta NC, Bowman BM, Frank AL et al. PET-FDG imaging for follow-up evaluation of treated colorectal cancer.Radiology 1991; 199: 181P.

    Google Scholar 

  150. Gupta N, Bradfield H. Role of positron emission tomography scanning in evaluating gastrointestinal neoplasms.Semin Nucl Med 1996; 26: 65–73.

    Google Scholar 

  151. Pounds TR, Valk PE, Haseman MK et al. Whole-body PET-FDG imaging in diagnosis of recurrent colorectal cancer.J Nucl Med 1995; 36: 57P.

    Google Scholar 

  152. Bohdiewicz PJ, Juni JE, Ball D, Dworkin H. Krukenberg tumor and lung metastases from colon carcinoma diagnosed with F-18 FDG PET.Clin Nucl Med 1995; 20: 419–420.

    Google Scholar 

  153. Bohdiewicz PJ, Scott GC, Juni JE et al. Indium-111 OncoScinti CR/OV and F-18 FDG in colorectal and ovarian carcinoma recurrences. Early observations.Clin Nucl Med 1995; 20: 230–236.

    Google Scholar 

  154. Daenen F, Hustinx H, Paulus P et al. Detection of recurrent colorectal carcinoma with whole-body FDG PET.J Nucl Med 1996; 37; 261P.

    Google Scholar 

  155. Larson SM, Cohen AM, Cascade MBA. Clinical application and economic implications of PET in the assessment of colorectal cancer recurrence: a retrospective study. Abstract from the 1994 ICP Meeting, Institute for Clinical PET, Fairfax, Virginia.

  156. Haberkorn U, Strauss L, Dimitrakopoulou A et al. PET studies of fluorodeoxyglucose metabolism in patients with recurrent colorectal tumors receiving radiotherapy.J Nucl Med 1991; 32: 1485–1490.

    Google Scholar 

  157. Engenhart R, Kimmig BN, Straub LG et al. Therapy monitoring of presacral recurrences after high-dose irradiation: value of PET, CT, CEA and pain score.Strahlenther Onkol 1992; 168: 203–212.

    Google Scholar 

  158. Hawkins R. Pancreatic tumors: imaging with PET.Radiology 1995; 95: 320–322.

    Google Scholar 

  159. Megibow AJ, Zhou XH, Rotterdam H et al. Pancreatic adenocarcinoma: CT versus MR imaging in the evaluation of resectability - Report of the Radiology Diagnostic Oncology Group.Radiology 1995; 195: 327–332.

    Google Scholar 

  160. Syrota A, Duquesnoy N, Paraf M et al. The role of positron emission tomography in the detection of pancreatic disease.Radiology 1992; 143: 249–253.

    Google Scholar 

  161. Kirchner PT, Ryan J, Zalutsky M et al. Positron emission tomography for the evaluation of pancreatic disease.Semin Nucl Med 1980; 10: 374–391.

    Google Scholar 

  162. Kubo S, Yamamoto K, Magata Y et al. Assessment of pancreatic blood flow with positron emission tomography and oxygen-15-water.Ann Nucl Med 1991; 5: 133–138.

    Google Scholar 

  163. Bares R, Klever P, Hauptmann S et al. F-18 fluorodeoxyglucose PET in vivo evaluation of pancreatic glucose metabolism for detection of pancreatic cancer.Radiology 1994; 192: 79–86.

    Google Scholar 

  164. Friess H, Langhans J, Ebert M et al. Diagnosis of pancreatic cancer by 2[18F]-fluoro-2-deoxy-d-glucose positron emission tomography.Gut 1995; 365: 771–777.

    Google Scholar 

  165. Inokuma T, Tamaki N, Torizuka T et al. Evaluation of pancreatic tumors with positron emission tomography and F-18 fluorodeoxyglucose: comparison with CT and US.Radiology 1995; 195: 345–352.

    Google Scholar 

  166. Inokuma T, Tamaki N, Torizuka T et al. Value of fluorine-18-fluorodeoxyglucose and thallium-201 in the detection of pancreatic cancer.J Nucl Med 1995; 36: 229–235.

    Google Scholar 

  167. Klever P, Bares R, Fass J et al. PET with fluorine 18 deoxyglucose for pancreatic disease.Lancet 1992; 340: 1158–1159.

    Google Scholar 

  168. Stollfuss JC, Glatting G, Friess H et al. 2-(fluorine-18)-fluoro-2-deoxy-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation.Radiology 1995; 195: 339–344.

    Google Scholar 

  169. Benyounes H, Smith FW, Campbell C et al. Superimposition of PET images using18F-fluorodeoxyglucose with magnetic resonance images in patients with pancreatic carcinoma.Nucl Med Commun 1995; 16: 575–580.

    Google Scholar 

  170. Fukunaga T, Enomoto K, Okazumi S et al. Analysis of glucose metabolism in patients with esophageal cancer by PET: estimation of hexokinase activity in the tumor and usefulness for clinical assessment using18F-fluorodeoxyglucose.J Jpn Surg Soc 1994; 95: 317–325.

    Google Scholar 

  171. Yasuda S, Raja S, Hubner KF. Application of whole-body positron emission tomography in the imaging of esophageal cancer: report of a case.Surgery Today 1995; 25: 261–264.

    Google Scholar 

  172. Baker ME, Pelley R. Hepatic metastases: basic principles and implications for radiologists.Radiology 1995; 197: 329–337.

    Google Scholar 

  173. Ohashi I, Hanafusa K, Hanafusa K, Yoshida T. Small hepatocellular carcinomas: two-phase dynamic incremental CT in detection and evaluation.Radiology 1993; 189: 851–855.

    Google Scholar 

  174. Hollett MD, Jeffrey RB Jr, Nino-Murcia M et al. Dual-phase helical CT of the liver: value of arterial phase scans in the detection of small (≤1.5 cm) malignant hepatic neoplasms.AJR 1995; 164: 879–884.

    Google Scholar 

  175. Gupta N, Frank A, Mailliard J et al. Accurate detection of liver metastases in patients with primary malignancies using PET-FDG imaging.J Nucl Med 1993; 34: 6P.

    Google Scholar 

  176. Shields AT, Graham MM, Helton S et al. Utility F-18 FDG PET in preoperative evaluation of patients with colon carcinoma metastatic to liver.J Nucl Med 1995; 36: 106P.

    Google Scholar 

  177. Hustinx R, Paulus P, Daenen F et al. PET imaging of liver metastases: a retrospective study.J Nucl Med 1996; 37: 250P.

    Google Scholar 

  178. Messa C, Choi Y, Ho C et al. Quantitative evaluation of glucose utilization in liver metastases, parametric imaging of FDG uptake with PET.J Comput Assist Tomogr 1992; 16: 684–689.

    Google Scholar 

  179. Nagata Y, Yamamoto K, Hiraoka M et al. Monitoring liver tumor therapy with18F-FDG positron emission tomography.J Comput Assist Tomogr 1990; 14: 370–374.

    Google Scholar 

  180. Enomoto K, Fukanaga T, Okazumi S et al. Can fluorodeoxyglucose-positron emission tomography evaluate the functional differentiation of hepatocellular carcinoma?Kaku Igaku 1991; 28: 1353–1356.

    Google Scholar 

  181. Torizuka T, Tamaki N, Inokuma T et al. Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy.J Nucl Med 1994; 35: 1965–1969.

    Google Scholar 

  182. Torizuka T, Tamaki N, Inokuma T et al. In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET.J Nucl Med 1995; 36: 1811–1817.

    Google Scholar 

  183. Paul R. Comparison of fluorine-18-2-fluorodeoxyglucose and gallium-67 citrate imaging for detection of lymphoma.J Nucl Med 1987; 28: 288–292.

    Google Scholar 

  184. Bares R, Horstmann K, Altehoefer C et al. F-18 deoxyglucose (FDG) PET to assess local effects of radiation or chemotherapy in patients with malignant lymphoma.J Nucl Med 1991; 32: 918.

    Google Scholar 

  185. Newman JS, Francis IR, Kaminski MS, Wahl RL. Imaging of lymphoma with PET with 2-[F-18]-fluoro-2-deoxy-d-glucose: correlation with CT.Radiology 1994; 190: 111–116.

    Google Scholar 

  186. Lapela L, Leskinen S, Minn HR et al. Increased glucose metabolism in untreated non-Hodgkin's lymphoma: a study with positron emission tomography and fluorine-l8-fluorodeoxyglucose.Blood 1995; 86: 3522–3527.

    Google Scholar 

  187. Okada J, Yoshikawa K, Imazeki K et al. The use of FDG-PET in the detection and management of malignant lymphoma: correlation of uptake with prognosis.J Nucl Med 1991; 32: 686–691.

    Google Scholar 

  188. Jerusalem G, Paulus P, Warland V et al. Whole-body positron emission tomography using18F-fluorodeoxyglucose in the staging of Hodgkin's disease and non-Hodgkin's lymphoma.Eur J Nucl Med 1995; 22: 786.

    Google Scholar 

  189. Jerusalem G, Fassotte MF, Paulus P et al. Whole-body positron emission tomography for staging, response evaluation and follow-up of Hodgkin's disease and non-Hodgkin lymphoma.Blood 1995; 86 Suppl 1: 534a.

  190. Royal HD. Clinical applications of positron emission tomography in cancer: the good, the bad and the ugly.J Nucl Med 1992; 33: 330–332.

    Google Scholar 

  191. Yoshikawa K, Okada J, Uno K et al. Evaluation of therapeutic effect on the malignant lymphoma by dynamic positron emission tomographic technique using fluorine-18 2-deoxy-2-fluoro-d-glucose.J Nucl Med 1989; 30: 910.

    Google Scholar 

  192. Hoekstra OS, Ossenkoppele GJ, Golding R et al. Early treatment response in malignant lymphoma as determined by planar fluorine-l8-fluorodeoxyglucose scintigraphy.J Nucl Med 1993; 34: 1706–1710.

    Google Scholar 

  193. Bares R, Altehoefer C, Cremerius U et al. FDG-PET for metabolic classification of residual lymphoma after chemotherapy.J Nucl Med 1994; 35: 131P.

    Google Scholar 

  194. Okada J, Oonishi H, Yoshikawa K., et al. FDG-PET for predicting the prognosis of m malignant lymphoma.Ann Nucl Med 1994; 8: 187–191.

    Google Scholar 

  195. Leskinen-Kallio S, Ruotsalainen U, Nagren K et al. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin's lymphoma: a PET study.J Nucl Med 1991; 32: 1211–1218.

    Google Scholar 

  196. Bares R, Galonska P, Dempke W et al. Somatostatin receptor scintigraphy in malignant lymphoma: first results and comparison with glucose metabolism measured by positron emission tomography.Horm Metab Res Suppl 1993; 27: 56–58.

    Google Scholar 

  197. Schonberger JA, Stollfuss JC, Kocher F et al. Whole body 18-FDG-PET for staging of malignant lymphomas.Eur J Nucl Med 1994; 21: 727.

    Google Scholar 

  198. Wahl RL, Hawkins RA, Larson SM et al. Proceedings of a national cancer institute workshop: PET in oncology - a clinical research agenda.Radiology 1994; 193: 604–606.

    Google Scholar 

  199. Paulus P, Jerusalem G, Warland V et al. Apport de la tomographie à émission de positons (TEP) au 18-FDG corps entier dans le bilan d'extension, l'évaluation de l'efficacité thérapeutique et le suivi clinique des lymphomes hodgkiniens et non-hodgkiniens.Médecine Nucléaire - Imagerie Fonctionnelle et Métabolique 1995; 19: 7/9: 421.

    Google Scholar 

  200. Rigo P, Jerusalem G, Paulus P et al. Positron emission tomography using18F-fluorodeoxyglucose in response evaluation and follow-up of Hodgkin's disease and non-Hodgkin's lymphoma [abstract].Eur J Nucl Med 1995; 22:786.

    Google Scholar 

  201. Dimitrakopoulou-Strauss A, Strauss LG, Glodschmidt H et al. Evaluation of tumor metabolism and multidrug resistance in patients with treated malignant lymphomas.Eur J Nucl Med 1994; 21: 727.

    Google Scholar 

  202. Minn H, Paul R, Ahonen A. Evaluation of treatment response to radiotherapy in head and neck cancer with fluorine-18-fluorodeoxyglucose.J Nucl Med 1988; 29: 1521–1525.

    Google Scholar 

  203. Leskinen-Kallio S, Lindholm P, Lapela M et al. Imaging of head and neck tumors with positron emission tomography and [C-11] methionine.Int J Radiat Oncol Biol Phys 1994; 30: 1195–1199.

    Google Scholar 

  204. Lindholm P, Leskinen-Kallio S, Minn H et al. Comparison of fluorine-l8-fluorodeoxyglucose and carbon-ll-methionine in head and neck cancer.J Nucl Med 1993; 34: 1711–1716.

    Google Scholar 

  205. Moreau P, Goffart Y, Collignon J. Computed tomography of metastatic cervical lymph nodes.Arch Otolaryngol Head Neck Surg 1990; 116: 1190–1193.

    Google Scholar 

  206. Greven KM, McGuirt WF, Watson X et al. PET in the evaluation of laryngeal carcinoma.Ann Otol Rhino[ Laryngol 1995; 104: 274–278.

    Google Scholar 

  207. Rege S, Mass A, Chaiken L et al. Use of positron emission tomography with fluorodeoxyglucose in patients with extracranial head and neck cancers.Cancer 1994; 73: 3047–3058.

    Google Scholar 

  208. Wong WL, Chevretton E, McGurk M, Croft D. PET-FDG imaging in the clinical evaluation of head and neck cancer. J R Soc Med 1995; 88: P469-P473.

    Google Scholar 

  209. Zeitouni AG, Yamamoto YL, Black M, Gjedde A. Functional imaging of head and neck tumors using positron emission tomography.J Otolaryngol 1994; 23: 77–80.

    Google Scholar 

  210. Bailet JW, Sercarz JA, Abemayor E et al. The use of positron emission tomography for early detection of recurrent head and neck squamous cell carcinoma in postradiotherapy patients.Laryngoscope 1995, 105: 135–139.

    Google Scholar 

  211. Jabour BA, Choi Y, Hoh CK et al. Extracranial head and neck: PET imaging with 2-(F-18)-fluoro-2-deoxy-d-glucose and MR imaging correlation.Radiology 1993; 186: 27–35.

    Google Scholar 

  212. McGuirt WF, Greven KM, Keyes JW et al. Positron emission tomography in the evaluation of laryngeal carcinoma.Ann Otol Rhinol Laryngol 1995; 104: 274–278.

    Google Scholar 

  213. McGuirt WE, Keyes JW, Greven KM et al. Preoperative identification of benign versus malignant parotid masses: a comparative study including positron emission tomography.Laryngoscope 1995; 105: 579–584.

    Google Scholar 

  214. Keyes JW Jr, Harkness BA, Greven KM et al. Salivary gland tumors: pretherapy evaluation with PET.Radiology 1994; 1992: 99–102.

    Google Scholar 

  215. Laubenbacher C, Saumweber D, Wagner-Manslau C et al. Comparison of fluorine-l8-fluorodeoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas.J Nucl Med 1995; 36: 1747–1757.

    Google Scholar 

  216. Braams JW, Pruim J, Freling NJL et al. Detection of lymph node metastases of squamous-cell cancer of the head and neck with FDG-PET and MRI.J Nucl Med 1995; 36: 211–216.

    Google Scholar 

  217. Paulus P, Moreau P, Sambon A et al. Contribution of positron emission tomography imaging with18F-fluorodeoxyglu-cose to presurgical loco-regional lymph node staging of head and neck tumors.Eur J Nucl Med 1995; 22: 659.

    Google Scholar 

  218. Lee TH, Anzai Y, Huda A et al.Positron emission tomographic imaging of the head and neck.West J Med 1993; 159: 72.

    Google Scholar 

  219. Lehmann W, Benchaou M, Slosman DO et al. Positron emission tomography in the preoperative evaluation of cervical lymph node metastasis of ORL cancer.Schweiz Rundsch Med Prax 1993; 82: 1457–1461.

    Google Scholar 

  220. Bailet JW, Abemayor E, Jabour BA et al. Positron emission tomography: a new, precise imaging modality for detection of primary head and neck tumors and assessment of cervical adenopathy.Laryngoscope 1992; 102: 281–288.

    Google Scholar 

  221. Mancuso AA, Drane WE, Mukherji SK. The promise FDG in diagnosis and surveillance of head and neck cancer.Cancer 1994; 74: 1193–1195.

    Google Scholar 

  222. Rege SD, Chaiken L, Hoh CK et al. Change induced by radiation therapy in FDG uptake in normal and malignant structures of the head and neck: quantitation with PET.Radiology 1993; 189: 807–812.

    Google Scholar 

  223. Greven KM, Williams DW, Keyes JW et al. Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation.Cancer 1994; 74: 1355–1359.

    Google Scholar 

  224. Mukherji SK, Drane WE, Tart RP et al. Comparison of thallium-201 and F-18 FDG SPECT uptake in squamous cell carcinoma of the head and neck.Am J Neuroradiol 1994; 15: 1837–1842.

    Google Scholar 

  225. Chaiken L, Rege S, Hoh C et al. Positron emission tomography with fluorodeoxyglucose to evaluate tumor response and control after radiation therapy.Int J Radiat Oncol Biol Phys 1993; 27: 455–464.

    Google Scholar 

  226. Greven KM, Williams DW, Keyes JW et al. Distinguishing tumor recurrence from irradiation sequelae with positron emission tomography in patients treated for larynx cancer.Int J Radiat Oncol Biol Phys 1994; 29: 841–845.

    Google Scholar 

  227. Haberkorn U, Strauss LG, Reisser C et al. Positron-enemissionstomographie (PET) fur Beurteilung von Tumor-proliferation und Therapieverlauf bei HNO-Tumoren.Radiologe 1992; 32: 296–301.

    Google Scholar 

  228. Haberkorn U, Strauss LG, Dimitrakopolou A et al. Fluorodeoxyglucose imaging of advanced head and neck cancer after chemotherapy.J Nucl Med 1993; 34: 12–17.

    Google Scholar 

  229. Reisser C, Haberkorn U, Dimitrakopoulou-Strauss A et al. Chemotherapeutic management of head and neck malignancies with positron emission tomography.Arch Otolaryngol Head Neck Surg 1995; 121: 272–276.

    Google Scholar 

  230. Miller BA, Feuer EJ, Hankey BF. Recent incidence trends of breast cancer in women and the relevance of early detection. An update.CA Cancer J Clin 1993; 43: 27–41.

    Google Scholar 

  231. Anderson I, Aspergen K, Janzow L et al. Mammographic screening and mortality from breast cancer: the Malmo Mammographic Screening Trial.Br Med J 1988; 297: 943–948.

    Google Scholar 

  232. Boring CC, Suires TS, Tong T. Cancer statistics 1993.CA Cancer J Clin 1993; 43: 7–26.

    Google Scholar 

  233. Early Breast Cancer Trialists' Collaborative Group. Systemic treatment of early breast cancer by hormonal, cytotoxic, or immune therapy. 133 randomised trials involving 31 000 recurrences and 24 000 deaths among 75 000 women.Lancet 1992; 339: 1–15, 71-85.

    Google Scholar 

  234. Danforth DN. The role of axillary lymph node dissection in the management of breast cancer.Principles and Practice of Oncology 1992; 6: 1–16.

    Google Scholar 

  235. Dehdashti F, McGuire AH, Van Brocklin F et al. Assessment of 21-(18F)fluoro-16α-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas.J Nucl Med 1991; 32: 1532–1537.

    Google Scholar 

  236. McGuire AH, Dehdashti F, Siegel BA et al. Positron tomographic assessment of 16α-(18F) fluoro-17β-estradiol uptake in metastatic breast carcinoma.J Nucl Med 1991; 32: 1526–1531.

    Google Scholar 

  237. Mintun MA, Welch MJ, Siegel BA et al. Breast cancer: PET imaging of estrogen receptors.Radiology 1988; 169: 45–48.

    Google Scholar 

  238. Elston CW. Grading of invasive carcinoma of the breast. In: Page DL, Anderson TJ, eds.Diagnostic histopathology of the breast. New York: Churchill Livingstone, 1987.

    Google Scholar 

  239. Paik S, Hazan R, Fisher ES. Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance oferbB-2 protein overexpression in primary breast cancer.J Clin Oncol 1990; 8: 103–112.

    Google Scholar 

  240. Bruce DM, Evans NT, Heys SD et al. Positron emission tomography: 2-deoxy-2-[18F]-fluoro-d-glucose uptake in locally advanced breast cancers.Eur J Surg Oncol 1995; 21: 280–283.

    Google Scholar 

  241. Crowe JP, Adler LP, Shenk RR et al. Positron emission tomography and breast masses: comparison with clinical, mammographic and pathological findings.Ann Surg Oncol 1994; 1: 132–140.

    Google Scholar 

  242. Dehdashti F, Mortimer JE, Siegel BA et al. Positron tomographic assessment of estrogen receptors in breast cancer: comparison with FDG-PET and in vitro receptor assays.J Nucl Med 1995; 36: 1766–1774.

    Google Scholar 

  243. Tse NY, Hoh CK, Hawkins RA et al. The application of positron emission tomographic imaging with fluorodeoxyglucose to the evaluation of breast disease.Ann Surg 1992; 216: 27–34.

    Google Scholar 

  244. Zasadny KR, Wahl RL. Enhanced FDG-PET tumor imaging with correlation-coefficient filtered influx-constant images.J Nucl Med 1996; 37: 371–374.

    Google Scholar 

  245. Minn H, Soini I. (18F)Fluorodeoxyglucose scintigraphy in diagnosis and follow-up of treatment in advanced breast cancer.Eur J Nucl Med 1989; 15: 61–66.

    Google Scholar 

  246. Wahl RL, Cody R, Hutchins G et al. Positron emission tomographic scanning of primary and metastatic breast with the radiolabeled glucose analogue 2-deoxy-2(18F)fluoro-d-glucose.N Engl J Med 1991; 324: 200.

    Google Scholar 

  247. Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-l8]-fluoro-2-deoxy-d-glucose.Radiology 1991; 179: 765–770.

    Google Scholar 

  248. Kubota K, Matsuzawa T, Ameniya A et al. Imaging of breast cancer with18F)fluorodeoxyglucose and positron emission tomography.J Comput Assist Tomogr 1989; 13: 1097–1098.

    Google Scholar 

  249. Nieweg OE, Kim EE, Wong WH et al. Positron emission tomography with fluorine-l8-deoxyglucose in the detection and staging of breast cancer.Cancer 1993; 71: 3920–3925.

    Google Scholar 

  250. Nieweg OE, Wong WH, Singletary SE et al. Positron emission tomography of glucose metabolism in breast cancer. Potential for tumor detection, staging and evaluation of chemotherapy.Ann NY Acad Sci 1993; 698: 423–428.

    Google Scholar 

  251. Adler LP, Crowe JP, Al-Kaisi NK, Sunshine JL. Evaluation of breast masses and axillary lymph nodes with (F-18)2-deoxy-2-fluoro-d-glucose PET.Radiology 1993; 187: 743–750.

    Google Scholar 

  252. Adler DD, Wahl RL. New methods for imaging the breast: techniques, findings, and potential.Am J Roentgenol 1995; 164: 19–30.

    Google Scholar 

  253. Avril N, Janicke F, Dose J et al. Imaging of breast tumors with FDG-PET in comparison with histology. Eur J Nucl Med 1994; 21: 749.

    Google Scholar 

  254. Wahl RL, Helvie MA, Chang AE, Andersson I. Detection of breast cancer in women after augmentation mammoplasty using fluorine-l8-fluorodeoxyglucose-PET. J Nucl Med 1994; 35: 872–875.

    Google Scholar 

  255. Cady B. The need to reexamine axillary lymph node dissection in invasive breast cancer.Cancer 1994; 73: 505–508.

    Google Scholar 

  256. March DE, Wechsler RJ, Kurtz AB et al. CT-pathologic correlation of axillary lymph nodes in breast carcinoma. J Comput Assist Tomogr 1991; 15: 440–444.

    Google Scholar 

  257. Adler LP, Cascade E, Crowe J et al. Axillary lymph node involvement in breast cancer: a retrospective study. Abstract from the 1994 ICP Meeting, Institute for Clinical PET, Fairfax, Virginia.

    Google Scholar 

  258. Petren-Mallmin M. Clinical and experimental imaging of breast cancer metastases in the spine.Acta Radiol Suppl 1994; 391: 1–23.

    Google Scholar 

  259. Wahl RI, Zasadny K, Helvie M et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography. Initial evaluation.J Clin Oncol 1993; 11: 2101–2111.

    Google Scholar 

  260. Jansson T, Westlin JE, Ahlstrom H et al. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation.J Clin Oncol 1995; 13: 1470–1477.

    Google Scholar 

  261. Uren RF, Howman-Giles RB, Shaw HM et al. Lymphoscintigraphy in high-risk melanoma of the trunk: predicting draining node groups, defining lymphatic channels and locating the sentinel node.J Nucl Med 1993; 34: 1435–1440.

    Google Scholar 

  262. Buzaid AC, Sandler AB, Maani S et al. Role of computed tomography in the staging of primary melanoma.J Clin Oncol 1993; 11: 638–643.

    Google Scholar 

  263. Wahl RL, Hutchins GD, Buchsbaum DJ et al. Fluorine-18-2-deoxy-2-fluoro-d-glucose (FDG) uptake into human tumor xenografts: feasibility studies for cancer imaging with PET.Cancer 1991; 67: 1544–1549.

    Google Scholar 

  264. Gritters LS, Francis IR, Zasadny KR. et al. Initial assessment of positron emission tomography using 2-fluorine-18-fluoro-deoxy-d-glucose in the imaging of malignant melanoma.J Nucl Med 1993; 34: 1420–1427.

    Google Scholar 

  265. Boni R, Boni RA, Steinert H et al. Staging of metastatic melanoma by whole-body positron emission tomography using 2-fluorine-18-fluoro-2-deoxy-d-glucose.Br J Dermatol 1995; 132: 556–562.

    Google Scholar 

  266. Steinert HC, Boni RAH, Buck A et al. Malignant melanoma: staging with whole-body positron emission tomography and 2-[F-18]-fluoro-2-deoxy-d-glucose.Radiology 1995; 195: 705–709.

    Google Scholar 

  267. Strauss LG, Dimitrakopoulou-Strauss A, van Kaick G. PET studies with F-l8-deoxyglucose in patients with metastatic melanoma prior and after therapy.J Nucl Med 1994; 35: 38P.

    Google Scholar 

  268. Blessing C, Feine U, Geiger L et al. Positron emission tomography and ultrasonography. A comparative retrospective study assessing the diagnostic validity in lymph node metastases of malignant melanoma.Arch Dermatol 1995; 131: 1394–1398.

    Google Scholar 

  269. Bhattathiry M, Glass E, Kirgan D et al. Efficacy of FDG whole body PET in staging and clinical management of metastatic malignant melanoma.J Nucl Med 1994; 35: 230P.

    Google Scholar 

  270. Kirgan D, Guenther J, Bhattathiry M et al. The importance of whole-body ET scans on the management of metastatic malignant melanoma.Prog Proc Annu Meet Am Soc Clin Oncol 1994; 13: 396.

    Google Scholar 

  271. Yao WJ, Hoh CK, Glaspy JA et al. Whole body FDG PET imaging for staging of malignant melanoma: is it cost effective?J Nucl Med 1994; 35: 8P.

    Google Scholar 

  272. Bloom AD, Adler LP, Shuck JM. Determination of malignancy of thyroid nodules with positron emission tomography.Surgery 1993; 114: 728–735.

    Google Scholar 

  273. Adler LP, Bloom AD. Positron emission tomography of thyroid masses.Thyroid 1993; 3: 195–200.

    Google Scholar 

  274. Joensuu H, Ahonen A, Klemi PJ. 18F-Fluorodeoxyglucose imaging in preoperative diagnosis of thyroid malignancy.Eur J Nucl Med 1988; 13: 502–506.

    Google Scholar 

  275. Joensuu H, Ahonen A. Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose.J Nucl Med 1987; 28: 910–914.

    Google Scholar 

  276. Fridrich L, Messa C, Landoni C et al. PET/(F-18)FDG and I-131 scintigraphy in patients with thyroid carcinoma.Eur J Nucl Med 1994; 2: 780.

    Google Scholar 

  277. Scott GC, Meier DA, Dickinson CZ. Cervical lymph node metastasis of thyroid papillary carcinoma imaged with fluorine-18-FDG, technetium-99m-pertechnetate and iodine-131-sodium iodide.J Nucl Med 1995; 36: 1843–1945.

    Google Scholar 

  278. Feine U, Lietzenmayer R, Hanke JP et al. 18FDG wholebody PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and131I.Nuklearmedizin 1995; 34: 127–134.

    Google Scholar 

  279. Grunwald F, Schomburg A, Bender H et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer.Eur J Nucl Med 1996; 23: 312–319.

    Google Scholar 

  280. Sisson JC, Ackermann RJ, Meyer MA et al. Uptake of 18-fluoro-2-deoxy-d-glucose by thyroid cancer: implications for diagnosis and therapy.J Clin Endocrinol Metab 1993; 77: 1090–1094.

    Google Scholar 

  281. The Western PET Association. Positron emission tomography. Applications in clinical oncology: an annotated bibliography.

  282. Neumann DR, Esselstyn CB, MacIntyre WJ et al. Primary hyperparathyroidism: preoperative parathyroid imaging with regional body FDG PET.Radiology 1994; 192: 509–512.

    Google Scholar 

  283. Sisson JC, Thompson NW, Ackerman RJ, Wahl RL. Use of 2-(F-18)-fluoro-2-deoxy-d-glucose PET to locate parathyroid adenomas in primary hyperparathyroidism.Radiology 1994; 192: 280.

    Google Scholar 

  284. Shulkin BL, Koeppe RA, Francis IR et al. Pheochromocytomas that do not accumulate metaiodobenzylguanidine: localization with PET and administration of FDG.Radiology 1993; 186: 11–15.

    Google Scholar 

  285. Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4[fluorine-18]fluoro-3-iodobenzylguanidine as a positronemitting analog of MIBG.J Nucl Med 1995; 36: 644–650.

    Google Scholar 

  286. Shulkin BL, Sisson JC, Hutchinson RJ. PET FDG studies of neuroblastoma.J Nucl Med 1994; 35: 135P.

  287. Abrams HL, Spiro R, Goldstein N. Metastases in carcinoma: analysis of 1000 autopsied cases.Cancer 1950; 3: 74–85.

    Google Scholar 

  288. Dunnick NR. Adrenal imaging: current status.AJR 1990; 154: 927–936.

    Google Scholar 

  289. Ahlstrom H, Eriksson B, Bergstrom M et al. Pancreatic neuroendocrine tumors: diagnosis with PET.Radiology 1995; 195: 333–337.

    Google Scholar 

  290. Foidart-Willems J, Depas G, Vivegnis D et al. Positron emission tomography and radiolabelled octreotide scintigraphy in carcinoid tumors [abstract].Eur J Nucl Med 1995; 22: 635.

    Google Scholar 

  291. Muhr C, Bergström M. Positron emission tomography applied in the study of pituitary adenomas.J Endocrinol Invest 1991; 14: 509–528.

    Google Scholar 

  292. Bergström M, Muhr C, Lundberg PO, Langström B. PET as a tool in the clinical evaluation of pituitary adenomas.J Nucl Med 1991; 32: 610–615.

    Google Scholar 

  293. Kern KA, Brunetti A, Norton JA et al. Metabolic imaging of human extremity musculoskeletal tumors by PET.J Nucl Med 1988; 29: 181–186.

    Google Scholar 

  294. Nieweg OR, Pruim J, van Ginkel RJ et al. Fluorine-18-fluorodeoxyglucose PET imaging of soft-tissue sarcoma.J Nucl Med 1996; 37: 257–261.

    Google Scholar 

  295. Griffeth LK, Dehdashti F, McGuire AH et al. PET evaluation of soft-tissue masses with fluorine-18 fluoro-2-deoxy-d-glucose.Radiology 1992; 182: 185–194.

    Google Scholar 

  296. Nieweg OE, Pruim J, Hoekstra HJ et al. Positron emission tomography with fluorine-18-fluorodeoxyglucose for the evaluation of therapeutic isolated regional limb perfusion in a patient with soft-tissue sarcoma.J Nucl Med 1994; 35: 90–92.

    Google Scholar 

  297. Jones DN, Brizel DM, Charles HC et al. Monitoring of response to neoadjuvant therapy of soft tissue and musculoskeletal sarcomas using F-18-FDG PET.J Nucl Med 1994; 35: 38P.

    Google Scholar 

  298. Tse N, Hoh C, Hawkins R et al. Positron emission tomography diagnosis of pulmonary metastases in osteogenic sarcoma.Am J Clin Oncol 1994; 17: 22–25.

    Google Scholar 

  299. Einhorn W, Nilsson B, Stovall K. Factors influencing survival in carcinoma of the ovary.Cancer 1985; 55: 2015–2019.

    Google Scholar 

  300. Wahl RL, Hutchins GD, Roberts J. FDG-PET imaging of ovarian cancer: initial evaluation in patients.J Nucl Med 1991: 32: 982.

    Google Scholar 

  301. Hubner KF, McDonald TJ, Niethammer JR et al. Assessment of primary and metastatic ovarian cancer by positron emission tomography using 2-(18F)-deoxyglucose.Gynecol Oncol 1993; 51: 197–204.

    Google Scholar 

  302. Hubner KF. Clinical applications of PET in ovarian cancer: an alternative to second look surgery. In: Proceedings 7th Annual International PET Conference, Institute for Clinical PET, Fairfax, Virginia, 1995.

    Google Scholar 

  303. Karlan BY, Hawkins R, Hoh C et al. Whole-body positron emission tomography with 2-(18F)-fluoro-2-deoxy-d-glucose can detect recurrent ovarian carcinoma.Gynecol Oncol 1993; 51: 175–181.

    Google Scholar 

  304. Casey MJ, Gupta NC, Moths CK. Experience with positron emission tomography (PET) scans in patients with ovarian cancer.Gynecol Oncol 1994; 53: 331–338.

    Google Scholar 

  305. Avril N, Janicke F, Dose J et al. FDG-PET evaluation of pelvic masses suspicious for primary or recurrent ovarian cancer.J Nucl Med 1994; 35: 231P.

    Google Scholar 

  306. Kawamura J, Hida S, Yoshida O et al. Validity of positron emission tomography using 2-deoxy-2-18F-fluoro-d-glucose in patients with renal cell carcinoma (preliminary report).Kaku Igaku 1988; 25: 1143–1148.

    Google Scholar 

  307. Wahl RL, Harney J, Hutchins G, Grossman HB. Imaging of renal cancer using positron emission tomography with 2-deoxy-2-(18F)-fluoro-d-glucose: pilot animal and human studies.J Urol 1991; 146: 1470–1474.

    Google Scholar 

  308. Harney JV, Wahl RL, Liebert M et al. Uptake of 2-deoxy-2-(18F)-fluoro-d-glucose in bladder cancer: animal localization and initial patient positron emission tomography.J Urol 1991; 145: 279–283.

    Google Scholar 

  309. Kocher F, Grimmel S, Hautmann R et al. Preoperative lymph nodes tagging in patients with kidney and urinary bladder neoplasm.J Nucl Med 1994; 35: 223P.

    Google Scholar 

  310. Wahl RL, Greenough R, Clarke MF, Grossman HB. Initial evaluation of FDG/PET imaging of metastatic testicular neoplasms.J Nucl Med 1993; 34: 6P.

    Google Scholar 

  311. Wilson CB, Young HE, Ott RJ et al. Imaging metastatic testicular germ cell tumours with [18]FDG positron emission tomography: prospects for detection and management.Eur J Nucl Med 1995; 22: 508–513.

    Google Scholar 

  312. Wahl RL. Emerging applications of PET in oncology: melanoma, lymphoma and prostate cancer. Proceedings, Sixth Annual International PET Conference, Institute for Clinical PET 1994, Fairfax, Virginia, USA.

  313. Laubenbacher C, Hofer C, Avril N et al. Can 18-FDG PET differentiate local recurrent prostatic cancer and scar?Eur J Nucl Med 1995; 22: 803.

    Google Scholar 

  314. Shreeve P, Grossman HB, Wahl RL. Initial assessment of FDG/PET detection of skeletal metastatic prostate carcinoma.J Nucl Med 1993; 34: 223P.

    Google Scholar 

  315. Delbeke D, Meyerowitz C, Lapidus RL et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET.Radiology 1995; 195: 47–52.

    Google Scholar 

  316. Sasaki M, Ichiya Y, Kuwabara Y et al. Ringlike uptake of [1817]FDG in brain abscess: a PET study.J Comput Assist Tomogr 1990; 14: 486–487.

    Google Scholar 

  317. Ishii K, Ogawa T, Hatazawa J et al. Highl-methyl-11C]methionine uptake in brain abscess: a PET study.J Comput Assist Tomogr 1993; 17: 660–661.

    Google Scholar 

  318. Hoffman JM, Waskin HA, Schifter T et al. FDG-PET in differentiating lymphoma from non malignant central nervous system lesions in patients with AIDS.J Nucl Med 1993; 34: 567–75.

    Google Scholar 

  319. Dethy S, Goldman S, Bleçis S et al.11C-methionine and fluorine-18 FDG PET study in brain hematoma.J Nucl Med 1994; 35: 1162–1166.

    Google Scholar 

  320. Ericson K, Lilja A, Bergström M et al. Positron emission tomography with ([11C]methyl)-l-methionine, [11C]d-glucose, and [68Ga]EDTA in supratentorial tumors.J Comput Assist Tomogr 1985; 9: 683–689.

    Google Scholar 

  321. Mosskin M, von Holst H, Bergstrom M et al. Positron emission tomography with11C-methionine and computed tomography of intracranial tumours compared with histopathologic examination of multiple biopsies.Acta Radiol 1987; 28: 673–681.

    Google Scholar 

  322. Kaschten B, Sadzot B, DelFiore G et al. Intérêt de la tomographie à émission de positons à l'aide de11C-méthionine dans l'étude des tumeurs cérébrales.Circ Metab Cerveau 1992; 9: 205.

    Google Scholar 

  323. Ogawa T, Shishido F, Kanno I et al. Cerebral glioma: evaluation with methionine PET.Radiology 1993; 186: 45–53.

    Google Scholar 

  324. Ogawa T, Inugami A, Hatazawa J et al. Clinical positron emission tomography for brain tumors: comparison of fluorodeoxyglucose F18 andl-methyl-11C-methionine.AJNR 1996; 17: 345–353.

    Google Scholar 

  325. Kuwabara Y, Ichiya Y, Otsuka M et al. High [18F]FDG uptake in primary cerebral lymphoma: a PET study.J Comput Assist Tomogr 1988; 12: 47–48.

    Google Scholar 

  326. Rosenfeld SS, Hoffman JM, Coleman RE et al. Studies of primary central nervous system lymphoma with fluorine-18-fluorodeoxyglucose positron emission tomography.J Nucl Med 1992; 33: 532–536.

    Google Scholar 

  327. Di Chiro G, Hatzawa J, Katz DA et al. Glucose utilization by intracranial meningiomas as an index of tumor aggressivity and probability of recurrence: a PET study.Radiology 1987; 164: 521–526.

    Google Scholar 

  328. Francavilla TL, Miletich RS, De Michele D et al. Positron emission tomography of pituitary macroadenomas: hormone production and effects of therapies.Neurosurgery 1991; 28: 826–833.

    Google Scholar 

  329. Griffeth LK, Rich KM, Dehdashti F et al. Brain metastases from non-central nervous system tumors: evaluation with PET.Radiology 1993; 186: 37–44.

    Google Scholar 

  330. Worthington C, Tyler JL, Villemure JG. Stereotaxic biopsy and positron emission tomography correlation of cerebral gliomas.Surg Neurol 1987; 27: 87–92.

    Google Scholar 

  331. Hanson MW, Glantz MJ., Hoffman JM et al. FDG-PET in the selection of brain lesions for biopsy.J Comput Assist Tomogr 1991; 15: 796–801.

    Google Scholar 

  332. Levivier M, Goldman S, Bidaut LM. et al. Positron emission tomography-guided stereotactic brain biopsy.Neurosurgery 1992; 31: 792–797.

    Google Scholar 

  333. Levivier M, Goldman S, Pirotte B et al. Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose.J Neurosurg 1995; 82: 445–452.

    Google Scholar 

  334. Gwan Go K, Keuter EJW, Kamman RL et al. Contribution of magnetic resonance spectroscopic imaging and L-[1-11C]tyrosine positron emission tomography to localization of cerebral gliomas for biopsy.Neurosurgery 1994; 4: 1002.

    Google Scholar 

  335. Pirotte B, Goldman S, Bidaut LM et al. Use of positron emission tomography (PET) in stereotactic conditions for brain biopsy.Acta Neurochir (Wien) 1995; 134: 79–82.

    Google Scholar 

  336. Tyler JL, Diksic M, Villemure JG et al. Metabolic and hemodynamic evaluation of gliomas using positron emission tomography.J Nucl Med 1987; 28: 1123–1133.

    Google Scholar 

  337. Heiss WD, Heidel W, Herholtz K et al. Positron emission tomography of fluorine-l8-deoxyglucose and image-guided phosphorus-31 magnetic resonance spectroscopy in brain tumors.J Nucl Med 1990; 31: 302–310.

    Google Scholar 

  338. Schifter T, Hoffman JM, Hanson MW et al. Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors.J Comput Assist Tomogr 1993; 17: 509–516.

    Google Scholar 

  339. Francavilla TL, Miletich RS, De Michele D et al. Positron emission tomography of pituitary macroadenomas: hormone production and effects of therapies.Neurosurgery1991; 28: 826–833.

    Google Scholar 

  340. Patronas NJ, Di Chiro GD, KuftaC et al. Prediction of survival in glioma patients by PET.J Neurosurg 1986; 62: 816–822.

    Google Scholar 

  341. Di Chiro G, Brooks RA. PET quantitation: blessing and curse [editorial].J Nucl Med 1988; 29: 1603–1604.

    Google Scholar 

  342. Kim CK, Alavi JB, Alavi A et al. New grading system of cerebral gliomas using positron emission tomography with F-18 fluorodeoxyglucose.J Neurooncol 1991; 10: 85–91.

    Google Scholar 

  343. Schmidt KC, Lucignagni G, Sokoloff L. Fluorine-18-fluorodeoxyglucose PET to determine regional cerebral glucose utilization: a re-examination.J Nucl Med 1996; 37: 394–399.

    Google Scholar 

  344. Fulham MJ, Melisi JW, Nishimiya J et al. Neuroimaging of juvenile pilocytic astrocytomas: an enigma.Radiology 1993; 189: 221–225.

    Google Scholar 

  345. Theodore WH, Di Chiro G, Margolin R et al. Barbiturates reduce human cerebral glucose metabolism.Neurology 1986; 36: 60–64.

    Google Scholar 

  346. Ishizu K, Nishizawa S, Yonekura Y et al. Effects of hyperglycemia on FDG uptake in human brain and glioma.J Nucl Med 1994; 35: 1104–1109.

    Google Scholar 

  347. Herholtz K, Pietrzyk U, Voges J et al. Correlation of glucose consumption and tumor cell density in astrocytomas.J Neurosurg 1993; 79: 853–858.

    Google Scholar 

  348. Fulham MJ, Brunetti A, Aloj L et al. Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids.J Neurosurg 1995; 83: 657–664.

    Google Scholar 

  349. Patronas NJ, Di Chiro G, Smith BH et al. Depressed cerebellar glucose metabolism in supratentorial tumors.Brain Res 1984; 291: 93–101.

    Google Scholar 

  350. Lilja A, Bergstrom K, Hartvig P et al. Dynamic study of supratentorial gliomas withl-methyl-11C-methionine and positron emission tomography.AJNR 1985; 6: 505–514.

    Google Scholar 

  351. Derlon JM, Bourdet C, Bustany P et al. [11C]l-methionine uptake in gliomas.Neurosurgery 1989; 25: 720–728.

    Google Scholar 

  352. Sato K, Kameyama M, Ishiwata K et al. Dynamic study of methionine uptake in glioma using positron emission tomography.Eur J Nucl Med 1992; 19: 426–430.

    Google Scholar 

  353. Sadzot B, Kaschten B, Delfiore G et al.11C-methionine uptake in brain tumors measured by PET: early clinical results. In: Mazoyer BM, Heiss WD, Comar D, eds. PET studies on amino acids metabolism and protein synthesis. Dordrecht: Kluwer Academic; 1993: 243–254.

    Google Scholar 

  354. Bergström M, Collins VP, Ehrin E et al. Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine.J Comput Assist Tomogr 1983; 7: 1062–1066.

    Google Scholar 

  355. Kaschten B, Sadzot B, Stevenaert A. Evaluation of brain tumor metabolism by PET.J Neurooncol 1994; 21: 2.

    Google Scholar 

  356. Borbely K, Fulham MJ, Brooks RA et al. PET-fluorodeoxyglucose of cranial and spinal neuromas.J Nucl Med] 1992; 33: 1931–1934.

    Google Scholar 

  357. Glantz MJ, Hoffman JM, Coleman RE et al. Identification of early recurrence of primary central nervous system tumors by F-18-fluorodeoxyglucose positron emission tomography.Ann Neurol 1991; 29: 347–355.

    Google Scholar 

  358. Ito M, Patronas NJ, Di Chiro G et al. Effect of moderate level X-radiation to brain on cerebral glucose utilization.J Comput Assist Tomogr 1986; 10: 584–588.

    Google Scholar 

  359. Abe Y, Matsuzawa T, Fujiwara Tet al. Assessment of radiotherapeutic effects on experimental tumors using18F-2-fluoro-2-deoxy)d-glucose.Eur J Nucl Med 1986; 12: 325–328.

    Google Scholar 

  360. Kubota K, Matsuzawa T, Takahashi T et al. Rapid and sensitive response of carbon-11-l-methionine tumor uptake to irradiation.J Nucl Med 1989; 30: 2012–2016.

    Google Scholar 

  361. Mineura K, Yasuda T, Kowada M et al. Positron emission tomographic evaluations in the diagnosis and therapy of multifocal glioblastoma.Pediatr Neurosci 1985–1986; 12: 208–212.

    Google Scholar 

  362. Ogawa T, Uemura K, Kanno I et al. Delayed radiation necrosis of brain evaluated by positron emission tomography.Tokohu J Exp Med 1988; 155: 247–260.

    Google Scholar 

  363. Rozental JM, Levine RS, Nickles RJ, Dobkin JA. Glucose uptake by gliomas after treatment. A positron emission tomographic study.Arch Neurol 1989; 46: 1302–1307.

    Google Scholar 

  364. Hölzer T, Herholtz K, Jeske J, Heiss WD. FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma.J Comput Assist Tomogr 1993; 17: 681–687.

    Google Scholar 

  365. Holthoff VA, Herholtz K, Berthold F et al. In vivo metabolism of childhood posterior fossa tumors and primitive neuroectodermal tumors before and after treatment.Cancer 1993; 72: 1394–1403.

    Google Scholar 

  366. Patronas NJ, Di Chiro G, Brooks RA et al. Work in progress: [18F]fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain.Radiology 1982; 144: 885–889.

    Google Scholar 

  367. Di Chiro G, Oldfield E, Wright DC. et al. Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors: PET and neuropathologic studies.AJNR 1987; 8: 1083–1091.

    Google Scholar 

  368. Doyle WK, Budinger TF, Valk PE et al. Differentiation of cerebral radiation necrosis from tumor recurrence by F-18-FDG and Rb-82 positron emission tomography.J Comput Assist Tomogr 1987; 11: 563–570.

    Google Scholar 

  369. Valk PE, Budinger TF, Levin VA et al. PET of malignant cerebral tumors after interstitial brachytherapy. Demonstration of metabolic activity and correlation with clinical outcome.J Neurosurg 1988; 69: 830–838.

    Google Scholar 

  370. Ogawa T,. Kanno I, Shishido Fet al. Clinical value of PET with18F-fluorodeoxyglucose andl-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury.Acta Radiol 1991; 32: 197–202.

    Google Scholar 

  371. Ishikawa M, Kikuchi H, Miyatake S et al. Glucose consumption in recurrent gliomas.Neurosurgery 1993; 33: 28–33.

    Google Scholar 

  372. Janus TJ, Kim EE, Tilbury R et al. Use of [18F]fluorodeoxyglucose positron emission tomography in patients with primary malignant brain tumors.Ann Neurol 1993; 33: 540–548.

    Google Scholar 

  373. Mogard J, Kihlström L, Ericson K et al. Recurrent tumor vs radiation effects after gamma knife radiosurgery of intracerebral metastases: diagnosis with PET-FDG.J Comput Assist Tomogr 1994; 18: 177–181.

    Google Scholar 

  374. Lilja A, Ludqvist H, Olsson Yet al. Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions.Acta Radiol 1989; 30: 121–128.

    Google Scholar 

  375. Sawataishi J, Mineura K, Sasajima T et al. Effects of radiotherapy determined by11C-methyl-l-methionine positron emission tomography in patients with primary cerebral malignant lymphoma.Neuroradiology 1992; 34: 517–519.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rigo, P., Paulus, P., Kaschten, B.J. et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 23, 1641–1674 (1996). https://doi.org/10.1007/BF01249629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01249629

Key words

Navigation