Skip to main content
Log in

Effect of transient reduction of cerebral blood flow in normotensive rats on striatal dopamine-release

  • Rapid Communication
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

Bilateral Clamping of both Carotid Arteries (BCCA) in normotensive rats is known to cause a transient reduction in cerebral blood flow. Using in vivo transstriatal microdialysis and HPLC/ECD we measured the release of dopamine and DA-metabolites under these oligemic conditions. BCCA caused a substantial stimulation of striatal DA-release (40-fold) and a decrease of the outflow of DA-metabolites. The elevated DA-release returned to baseline levels before the onset of reperfusion. Upon reperfusion, DA-metabolites rose above their initial baseline values. Transstriatal administration of glutamatediethylester (GDEE, 10 mM) attenuated the oligemia-induced DA-release. A sudden reduction of blood flow appears to disrupt the compartmentation of dopamine in striatal dopaminergic nerve endings in a similar but more moderate manner as compared to ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama Y, Koshimura K, Ohue T, Lee K, Miwa S, Yamagata S, Kikuchi H (1991 a) Effects of hypoxia on the activity of the dopaminergic neuron system in the rat striatum as studied by in vivo brain microdialysis. J Neurochem 57: 997–1002

    Google Scholar 

  • Akiyama Y, Akihiro I, Koshimura K, Ohue T, Yamagata S, Miwa S, Kikuchi H (1991 b) Effect of transient forebrain ischemia and reperfusion on function of dopaminergic neurons and dopamine reuptake in vivo in rat striatum. Brain Res 561: 120–127

    Google Scholar 

  • Block F, Sieklucka M, Schmidt-Kastner R, Heim C, Sontag KH (1993) Metabolic changes during and after transient clamping of carotid arteries in normotensive rats. Brain Res Bull 31: 91–96

    Google Scholar 

  • Bortolotto ZA, Heim C, Sieklucka M, Block F, Sontag KH, Cavalheiro EA (1991) Effects of bilateral clamping of carotid arteries on hippocampal kindling in rats. Phys Behav 49: 667–671

    Google Scholar 

  • Brierley JB, Graham DI (1984) Hypoxia and vascular disorder of the central nervous system. In: Adams JH, Corsellis JAN, Cuchen LW (eds) Greenfield's neuropathology, 4th ed. Edward Arnold, London, pp 125–207

    Google Scholar 

  • Brown RM, Kehr W, Carlsson A (1975) Functional and biochemical aspects of catecholamine metabolism in brain under hypoxia. Brain Res 85: 491–509

    Google Scholar 

  • Calderini G, Carlson A, Nordström CH (1978) Influence of transient ischemia on monoamine metabolism in the rat brain during nitroux oxide and phenobarbitone anaesthesia. Brain Res 157: 303–310

    Google Scholar 

  • Choki JI, Yamaguchi T, Takeya Y, Morotomi Y, Omae T (1977) Effect of carotid artery ligation on regional cerebral blood flow in normotensive and spontaneously hypertensive rats. Stroke 8: 374–379

    Google Scholar 

  • Commissiong JW (1985) Monoamine metabolites: their relationship and lack of relationship to monoaminergic neuronal activity. Biochem Pharmacol 34: 1127–1131

    Google Scholar 

  • Cvejic V, Micic DV, Djuricic BM, Mrsulja BJ, Mrsulja BB (1980) Monoamines and related enzymes in cerebral cortex and basal ganglia following transient ischemia in gerbils. Acta Neuropathol (Berl) 51: 71–77

    Google Scholar 

  • Damsma G, Boisvert DP, Mudrick LA, Wenkstern D, Fibiger HC (1990) Effects of transient forebrain ischemia and pargyline on extracellular concentrations of dopamine, serotonin, and their metabolites in the rat striatum as determined by in vivo microdialysis. J Neurochem 54: 801–808

    Google Scholar 

  • Davis JN, Carlsson A (1973) The effect of hypoxia on monoamine synthesis, levels, and metabolism in rat brain. J Neurochem 21: 783–790

    Google Scholar 

  • Eklöf B, Siesjö BK (1973) Cerebral blood flow in ischemia caused by carotid artery ligation in the rat. Acta Physiol Scand 87: 69–77

    Google Scholar 

  • Ginsberg MD, Graham DI, Busto R (1985) Regional glucose utilization and blood flow following graded forebrain ischemia in the rat: correlation with neuropathology. Ann Neurol 18: 470–481

    Google Scholar 

  • Globus MYT, Ginsberg MD, Dietrich WD, Busto R, Scheinberg P (1987) Substantia nigra lesion protects against ischemic damage in the striatum. Neurosci Lett: 251–256

  • Globus MYT, Busto R, Dietrich WD, Martinez E, Valdez I, Ginsberg MD (1988 a) Intraischemic extracellular release of dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 51: 1455–1464

    Google Scholar 

  • Globus MYT, Busto R, Dietrich WD, Martinez E, Valdez I, Ginsberg MD (1988 b) Effect of ischemia on the in vitro release of striatal dopamine, glutamate, and gamma-aminobutyric acid studied by intracerebral microdialysis. J Neurochem 51: 1455–1464

    Google Scholar 

  • Heim C, Sieklucka M, Block F, Schmidt-Kastner R, Jaspers R, Sontag KH (1990) Transient occlusion of carotid arteries leads to disturbed spatial learning and memory in the rat. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1990. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 53–61

    Google Scholar 

  • Heim C, Bortolotto ZA, Cavalheiro EA, Sontag KH (1991) Transient occlusion of rat carotid arteries decreases susceptibility to pilocarpine seizures. Brain Res 544: 253–259

    Google Scholar 

  • Hillered L, Hallström A, Segersvärd S, Persson L, Ungerstedt U (1989) Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 5: 607–616

    Google Scholar 

  • Jaspers R, Block F, Heim C, Sontag KH (1990) Spatial learning is affected by transient occlusion of common carotid arteries (2VO): comparison of behavioural and histopathological changes after 2VO and four-vessel-occlusion in rats. Neurosci Lett 117: 149–153

    Google Scholar 

  • Martinez-Fong D, Rosales MG, Gongora-Alforo JL, Hernandez S, Aceves J (1992) NMDA receptor mediates dopamine release in the striatum of unanaesthetized rats as measured by brain microdialysis. Brain Res 595: 309–315

    Google Scholar 

  • Masuda T, Yamazaki M, Ito Y (1990) Comparison between extracellular and tissue fluctuation of dopamine and related metabolites in striatum under hypoxia. Brain Res 523: 356–358

    Google Scholar 

  • Obrenovitch TP, Sarna GS, Matsunoto T, Symon L (1990) Extracellular striatal dopamine and its metabolites during transient cerebral ischemia. J Neurochem 54: 1526–1532

    Google Scholar 

  • Overton P, Clarke D (1991) N-Methyl-D-aspartate increases the excitability of nigrostriatal dopamine terminals. Eur J Pharmacol 201: 117–120

    Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Persson L, Bolander H, Hillered L, Hardemark HG, Olsson Y, Ponten U (1989) Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke 20: 641–645

    Google Scholar 

  • Phebus LA, Clemens JA (1989) Effects of transient global, cerebral ischemia on striatal extracellular dopamine, serotonin and their metabolites. Life Sci 19: 1335–1342

    Google Scholar 

  • Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in un-anaesthetized rat. Stroke 10: 267–272

    Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model for transient forebrain ischemia. Ann Neurol 11: 491–498

    Google Scholar 

  • Roth RH, Murrin LC, Walter JR (1976) Central dopaminergic neuron: effects of alterations in impulse flow on the accumulation of 3,4-dihydroxyphenylacetic acid. Eur J Pharmacol 36: 163–171

    Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105–111

    Google Scholar 

  • Schmidt-Kastner R, Heim C, Sontag KH (1988) Comparison of histological changes produced in rats by cerebral ischemia (4 Vessel Occlusion) or cerebral oligemia (2 Vessel Occlusion). In: Elsner N, Barth FG (eds) Sense organs — interface between environment and behaviour (Proceedings of the 16h Göttinger Neurobiology Conference). G Thieme, Stuttgart New York, p 323

    Google Scholar 

  • Sontag KH, Heim C, Block F, Sieklucka M, Schmidt-Kastner R, Melzacka M, Osborne N, Läer S, Hüther G, Kunkel M, Ulrich F, Bortolotto Z, Weiner N, Wesemann U (1992) Cerebral oligemic hypoxia and forebrain ischemia — common and different longlasting consequences. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia 1992. Wissenschaftliche Verlagsgesellschaft, Stuttgart

    Google Scholar 

  • Tepper JM, Young SJ, Groves PM (1984) Autoreceptor-mediated changes in dopaminergic terminal excitability: effects of increases in impulse flow. Brain Res 309: 309–316

    Google Scholar 

  • Weinberger J, Cohen G (1982) The differential effect of ischemia on the active uptake of dopamine, gamma-aminobutyric acid, and glutamate by brain synaptosomes. J Neurochem 38: 963–968

    Google Scholar 

  • Weinberger J, Nieves-Rosa J, Cohen G (1985) Nerve terminal damage in cerebral ischemia: protective effect of alpha-methyl-para-tyrosine. Stroke 16: 864–870

    Google Scholar 

  • Wiernsperger N, Sylvia AL, Jöbsis FF (1981) Incomplete transient ischemia: a non-destructive evaluation of in vivo cerebral metabolism and hemodynamics in rat brain. Stroke 12: 864–868

    Google Scholar 

  • Zetterström T, Sharp T, Ungerstedt U (1986) Further evaluation of the mechanism by which amphetamine reduces striatal dopamine metabolism: a brain dialysis study. Eur J Pharmacol 132: 1–9

    Google Scholar 

  • Zetterström T, Sharp T, Collin AK, Ungerstedt U (1988) In vivo measurement of extracellular dopamine and DOPAC in rat striatum after various dopamine-releasing drugs; implications for the origin of extracellular DOPAC. Eur J Pharmacol 148: 327–334

    Google Scholar 

  • Zumstein A, Karduck W, Starke K (1981) Pathways of dopamine metabolism in the rabbit caudate nucleus in vitro. Naunyn Schmiedebergs Arch Pharmacol 316: 205–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Läer, S., Block, F., Huether, G. et al. Effect of transient reduction of cerebral blood flow in normotensive rats on striatal dopamine-release. J. Neural Transmission 92, 203–211 (1993). https://doi.org/10.1007/BF01244879

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244879

Keywords

Navigation