Skip to main content
Log in

Radiation doses of yttrium-90 citrate and yttrium-90 EDTMP as determined via analogous yttrium-86 complexes and positron emission tomography

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Yttrium-90 is used for palliative therapy for the treatment of skeletal metastases, but because it is a pure β- emitter, data on the pharmacokinetics and radiation doses to metastases and unaffected organs are lacking. To obtain such data, the present study employed yttrium-86 as a substitute for90Y, with detection by positron emission tomography (PET). The study compared the properties of two different86Y complexes —86y-citrate and86Y -ethylene diamine tetramethylene phosphonate (EDTMP) — in ten patients with prostatic cancer who had developed multiple bone metastases (the ten patients being divided into two groups of five). Early dynamics were measured up to 1 h post injection (p.i.) over the liver region, followed by subsequent whole-body PET scans up to 3 days p.i. Absolute uptake data were determined for normal bone, bone metastases, liver and kidney. Radiation doses were calculated according to the MIRD recommendations. Based on the pharmacokinetic measurements of the distribution of the86Y complexes, it was possible to calculate radiation doses for the bone metastases and the red bone marrow delivered by complexes containing90Y. In 1 cm3 of bone metastasis, doses of 26±11 mGy/MBq and 18±2 mGy/MBq were determined per MBq of injected90Y- citrate and90Y- EDTMP, respectively. The doses to the bone marrow were 2.5±0.4 mGy/MBq for90Y- citrate and 1.8±0.6 mGy/MBq for90Y-EDTMP.86Y and PET provide quantitative information applicable to the clinical use of90Y. This method may also be useful for the design of other90Y radiopharmaceuticals and for planning radiotherapy dosages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Campa JA III, Payne R. The management of intractable bone pain: a clinican's perspective.Semin Nucl Med 1992; 22: 3–10.

    PubMed  Google Scholar 

  2. Silberstein EB, Elgazzar AH, Kapilivsky A. Phosphorus-32 radiopharmaceuticals for the treatment of painful osseous metastases.Sem Nucl Med 1992; 22: 17–27.

    Google Scholar 

  3. Lewington VJ. Targeted radionuclide therapy for bone metastases.Eur J Nucl Med 1993; 20: 66–74.

    PubMed  Google Scholar 

  4. Kutzner J, Hahn K, Grimm W, Rösler HP, Eckmann A, Bender S.90Yttrium-citrate for pain-therapy by bone metastases.NUC Compact 1990; 21: 128–132.

    Google Scholar 

  5. Logan KW, Volkert WA, Holmes RA. Radiation dose calculations in persons receiving injection of samarium-153 EDTMP.J Nucl Med 1987; 28: 505–509.

    PubMed  Google Scholar 

  6. Eary JF, Collins C, Stabin M, Vernon C, Petersdorf S, Baker M, Hartnett S, Ferency S, Addison SJ, Appelbaum F, Gordon EE. Samarium- 153-EDTMP biodistribution and dosimetry estimation.J Nucl Med 1993; 34: 1031–1036.

    PubMed  Google Scholar 

  7. Bayouth JE, Macey DJ, Kasi LP, Fosella FV Dosimetry and toxicity of samarium-153-EDTMP administered for bone pain due to skeletal metastases.J Nucl Med 1994; 35: 63–69.

    PubMed  Google Scholar 

  8. Raylman RR, Wahl RL. Magnetically enhanced radionuclide therapy.J Nucl Med 1994; 35: 157–163.

    PubMed  Google Scholar 

  9. Stewart JSW, Hird V, Snook D, Sullivan M, Myers MJ, Epenetos AA. Intraperitoneal131I- and90Y labeled monoclonal antibodies for ovarian cancer: pharmacokinetics and normal tissue dosimetry.Int J Cancer 1988; 3: 71s-76s.

    Google Scholar 

  10. Stewart JSW, Snook D, Dhokia B, Sivolapenko G, Hooker G, Taylor Papadimitriou J, -Rowlinson G, Sullivan M, Lambert HE, Coulter C, Mason WP, Soutter WP, Epenetos AA. Intraperitoneal yttrium-90-labeled monoclonal antibody in ovarian cancer.J Clin Oncol 1990; 8: 1941–1950.

    PubMed  Google Scholar 

  11. Dunscombe PE, Bhattacharyya AK, Dale RG. Technical note. The assessment of the body distribution of yttrium-90 ferric hydroxide during radiation synovectomy.Br J Radiol 1976; 49:372–373.

    PubMed  Google Scholar 

  12. Smith T, Crawley JCW, Shawe DJ, Gumpel JM. SPECT using bremsstrahlung to quantify90Y uptake in Baker's cysts: its application in radiation synovectomy of the knee.Eur J Nucl Med 1988; 14: 498–503.

    PubMed  Google Scholar 

  13. Smith T, Shawe DJ, Crawley JCW, Gumpel JM. Use of single photon emission computed tomography (SPECT) to study the distribution of90Y in patients with Baker's cysts and persistent synovitis of the knee.Ann Rheum Dis 1988; 47: 553–558.

    PubMed  Google Scholar 

  14. Mullan BP, Surveyor I. Imaging yttrium-90 synovectomy studies.Australas Radiol 1989; 33: 379–381.

    PubMed  Google Scholar 

  15. Kutzner J, Hahn K, Beyer GJ, Grimm W, Bockisch A, Rösler HP. Scintigraphic use of Y-87 during Y-90 therapy of bone metastases.Nucl Med 1992; 31: 53–56.

    Google Scholar 

  16. Order SE, Klein JL, Leichner PK, Frincke J, Lollo C, Carlo DJ.90Yttrium anti-ferritin — a new therapeutic radiolabeled antibody.Int J Radiat Oncol Biol Phys 1986; 12: 277–281.

    PubMed  Google Scholar 

  17. Order SE, Vriesendrop HM, Klein JL, Leichner PK. A phase I study of90yttrium antiferritin: dose escalation and tumor dose.Antibody Immunoconj Radiopharm 1988; 1: 163–168.

    Google Scholar 

  18. Leichner PK, Nai-Chen Yang, Frankel TL, Loudenslager DM, Hawkins WG, Klein JL, Order SE. Dosimetry and treatment planing for90Y- labeled antiferritin in heaptoma.Int J Radiat Oncol Biol Phys 1988; 14: 1033–1042.

    PubMed  Google Scholar 

  19. Williams LE, Beatty BG, Beatty JD, Wong JYC, Paxton RJ, Shivley JE. Estimation of monoclonal antibody associated90Y activity needed to achieve certain tumor radiation doses in colorectal cancer patients.Cancer Res 1990; 50: 1029s-1030s.

    PubMed  Google Scholar 

  20. Vriesendrop HM, Herpst JM, Germack MA, Klein JL, Leichner PK, Loudenslager DM, Order SE. Phase I-II studies of yttrium-labeled antiferritin treatment for endstage Hodgkin's disease, including Radiation Therapy Oncology Group 87-01.J Clin Oncol 1991; 9: 918–928.

    PubMed  Google Scholar 

  21. Zimmer AM, Kuzel TM, Spies WG, Duba RB, Webber DI, Kazikiewicz JM, Radosevich JA, LoCicero J, Robinson PG, Gilyon KA, Samuelson E, Spies SM, Rosen ST, Maguire RT. Comparative pharmacokinetics of In-111 and Y-90 B72.3 in patients following single dose intravenous administration.Antibody Immunoconj Radiopharm 1992; 5: 285–294.

    Google Scholar 

  22. Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics.J Nucl Med 1993; 34: 2222–2226.

    PubMed  Google Scholar 

  23. Yang Z, Zhang MY, Lin BH, Jin XH. Study of the pharmacokinetics of Y-90-EDTMP. Abstracts of the 6th world congress of the World Federation of Nuclear Medicine and Biology, 23–28 October 1994, Sydney, Australia.Eur J Nucl Med 1994; s21; S 126.

    Google Scholar 

  24. Rösch F, Qaim SM, Stöcklin G. Nuclear data relevant to the production of the positron emitting radioisotope86Y via the86Sr(p,n)- andnatRb(3He,2n)-processes.Radiochim Acta 1993; 61: 1–8.

    Google Scholar 

  25. Rösch F, Qaim SM, Stöcklin G. Production of the positron emitting radioisotope86Y for nuclear medical application.Appl Radiat Isot 1993; 44: 677–681.

    Google Scholar 

  26. Nadler SB, Hidalgo JU, Bloch T. Prediction of blood volume in normal human adults.Surgery 1962; 52: 22–29.

    Google Scholar 

  27. Rota Kops E, Herzog H, Schmid A, Holte S, Feinendegen LE. Performance characteristics of an eight-ring whole-body PET scanner.J Assist Comput Tomogr 1990; 14: 437–445.

    Google Scholar 

  28. Snyder WS, Ford MR, Warner GG, Watson SB. “S” absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD pamphlet no 11. New York: The Society of Nuclear Medicine, 1975.

    Google Scholar 

  29. Snyder WS, Ford MR, Warner GG, Fisher LH Jr. Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of heterogeneous phantom. MIRD pamphlet no 5.J Nucl Med 1969; 10: 5s-52s.

    Google Scholar 

  30. Loevinger R, Budinger TF, Watson EE.MIRD Primer. New York: The Society of Nuclear Medicine; 1988: 31–33.

    Google Scholar 

  31. Martell AE. Critical stability constants. Library of Congress cataloging in publication data. New York: Plenum Press, 1989.

    Google Scholar 

  32. Tikhonova LI. Investigation of the complex formation of certain alkaline-earth and rare-earth elements with ethylenediamine-N,N,N′,N′-tetramethylene-phosphonic acid. (russ.)Radiokhimiya 1970; 12: 519–521.

    Google Scholar 

  33. Kabachnik I, Dyatlova NM, Medved TT, Begulin YF, Sidolenko VV. Complex formation properties of ethylenedi]amine-N,N,N′,N′-tetramethylene-phosphonic and diethylenetriamine-N,N,N′,N″,N″-pentamethylene phosphonic acids. (russ.)Dokl Akad Nauk 1967; 175: 351–360.

    Google Scholar 

  34. Beyer GJ, Bergmann R, Kampf G, Mäding P, Rösch F. Simultaneous study of the biodistribution of radio-yttrium complexed with EDTMP and citrate ligands in tumour-bearing mice.Nucl Med Biol 1992; 19: 201–203.

    Google Scholar 

  35. Goeckeler WF, Edwards B, Volkert WA, Holems RA, Simon J, Wilson D. Skeletal localization of samarium-153 chelates: potential therapeutic bone agents.J Nucl Med 1987; 28: 495–504.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rösch, F., Herzog, H., Plag, C. et al. Radiation doses of yttrium-90 citrate and yttrium-90 EDTMP as determined via analogous yttrium-86 complexes and positron emission tomography. Eur J Nucl Med 23, 958–966 (1996). https://doi.org/10.1007/BF01084371

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01084371

Key words

Navigation