Skip to main content
Log in

Scintimammography with technetium-99m methoxyisobutylisonitrile: comparison with mammography and magnetic resonance imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

The aim of the study was to compare the diagnostic accuracy of scintimammography with technetium-99m methoxyisobutylisonitrile (MIBI; SMM) in the detection of primary breast cancer with that of mammography (MM) and magnetic resonance imaging (MRI). Fifty-six patients with suspected lesions detected by palpation or MM were included in the study. Within the 4 weeks preceding excisional biopsy, MM and MRI were performed in all patients. Between 5 and 10 min after the injection of 740 MBq99mTc-MIBI, SMM in the prone position was performed. In the total group of 56 patients, 43 lesions were palpable, while 13 were non-palpable but were detected by MM. Breast cancer was confirmed by histopathology in 27 of the patients (22 palpable and 5 non-palpable carcinomas). The tumour size ranged from 6 to 80 mm in diameter. For non-palpable lesions, the sensitivity of SMM, MM and MRI was 60%, 60% and 100%, respectively, while the specificity was 75%, 25% and 50%, respectively. For palpable breast lesions, all methods showed high sensitivity (SMM 91%, MM 95%, MRI 91%) but SMM demonstrated significantly higher specificity (SMM 62%, MM 10%, MRI 15%). In two mammographically negative tumours (dense tissue), SMM showed a positive result. In comparison to MRI, one additional carcinoma could be diagnosed by SMM. It may be concluded that for palpable breast lesions, the diagnostic accuracy of SMM is superior to that of MM and MRI. Through the complementary use of SMM it is possible to increase the sensitivity for the detection of breast cancer and multicentric disease. In patients in whom the status of a palpable breast mass remains unclear, SMM may help to reduce the amount of unnecessary biopsies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelsey JL, Gammon MD. The epidemiology of breast cancer.Cancer 1991; 41: 146–165.

    Google Scholar 

  2. Andersson I. Mammographic screening and mortality from breast cancer: Malmö mammographic screening trial.Br J Med 1988; 297: 943–948.

    Google Scholar 

  3. Frisell J, Eklund G, Hellström L et al. Randomized study of mammography screening — preliminary report on mortality in the Stockholm trial.Breast Cancer Res Treat 1991; 18: 49–56.

    PubMed  Google Scholar 

  4. Miller AB, Baines CJ, To T et al. Canada national breast screening study.Can Med Assoc J 1992; 147: 1459–1488.

    Google Scholar 

  5. Shapiro S, Venet W, Strax P et al. Current results of the breast cancer screening randomized trial: the health insurance plan of greater New York study. In: Day NE, Miller AB, eds.Screening for breast cancer. Toronto: Hans Huber; 1988: 3–15.

    Google Scholar 

  6. Ciatto S, Cataliotti L, Distante V. Nonpalpable lesions detected with mammography: review of 512 consecutive cases.Radiology 1987; 165: 99–102.

    PubMed  Google Scholar 

  7. Hermann G, Janus C, Schwartz IS, Krivisky B, Bier S, Rabinowitz JG. Nonpalpable breast lesions: accuracy of prebiopsy mammographic diagnosis.Radiology 1987; 165: 323–226.

    PubMed  Google Scholar 

  8. Robertson CL. A private breast imaging practise: medical audit of 25,788 screening and 1,077 diagnostic examinations.Radiology 1993; 187: 75–79.

    PubMed  Google Scholar 

  9. Kopans DB. Positive predictive value of mammography.AJR 1992; 158: 521–526.

    PubMed  Google Scholar 

  10. Coveney EC, Geraghty JG, O'Laoide R, Hourihane JB, O'Higgins NJ. Reasons underlying negative mammography in patients with palpable breast cancer.Clin Radiol 1994; 49: 123–125.

    PubMed  Google Scholar 

  11. Lannin DR, Harris RP, Swanson FH, Edwards MS, Swanson MS, Pories WJ. Difficulties in diagnosis of carcinoma of the breast in patients less than fifty years of age.Surg Gynecol Obstet 1993; 177: 123–126.

    Google Scholar 

  12. Joensuu H, Asola R, Holli K, Kumpulainen E, Nikkanen V, Parvinen LM. Delayed diagnosis and large size of breast cancer after a false negative mammogram.Eur J Cancer 1994; 30: 1299–1302.

    Google Scholar 

  13. Madjar H, Makowiec U, Mundinger A, Du Bois A, Kommoss F, Schillinger H. Value of high resolution sonography in breast cancer screening.Ultraschall Med 1994; 15: 20–23.

    PubMed  Google Scholar 

  14. Kopans DB. What is a useful adjunct to mammography?Radiology 1986; 161: 560–561.

    PubMed  Google Scholar 

  15. Harms SE, Flamig DP, Hesley KL, Meiches MD, Jensen RA, Evans WP, Savino DA, Wells RV. MR imaging of the breast with rotating delivery of excitation off resonance. clinical experience with pathological correlation.Radiology 1993; 187: 493–501.

    PubMed  Google Scholar 

  16. Oellinger H, Heins S, Sander B et al. Gd-DTPA enhanced MRI of the breast: the most sensitive method for detecting multicentric carcinomas in female breast?Eur Radiol 1993; 3: 223–226.

    Google Scholar 

  17. Orel SG, Schnall MD, Livolsi VA, Troupin RH. MR imaging with radiologic-pathologic correlation.Radiology 1994; 190: 484–493.

    Google Scholar 

  18. Heywang SH, Wolf A, Pruss E, Hilbertz T, Eiermann W, Permanetter W. MR-imaging of the breast with Gd-DTPA: use and limitations.Radiology 1989; 171: 95–103.

    PubMed  Google Scholar 

  19. Weinreb JC, Newstead G. Controversies in breast MRI.Magn Reson Q 1994; 10: 67–83.

    PubMed  Google Scholar 

  20. Kaiser MA. MR-Mammographie.Radiologe 1993; 33: 292–299.

    PubMed  Google Scholar 

  21. Kao CH, Wang SJ, Liu TJ. The use of technetium-99m methoxyisobutylisonitrile breast scintigraphy to evaluate palpable breast masses.Eur J Nucl Med 1994; 21: 432–436.

    PubMed  Google Scholar 

  22. Khalkhali I, Mena I, Jouanne E et al. Prone scintimammography in patients with suspicion of breast cancer.J Am Coll Surg 1994; 178: 491–497.

    PubMed  Google Scholar 

  23. Khalkhali I, Cutrone JA, Mena I. Scintimammography: the complementary role of Tc-99m sestamibi prone breast imaging for the diagnosis of breast carcinoma.Radiology 1995; 196: 421–426.

    PubMed  Google Scholar 

  24. Khalkhali I, Cutrone JA, Mena I. Diggles L, Venegas R, Vargas H, Jackson B, Klein. Tc-99m sestamibi prone breast imaging for the diagnosis of breast carcinoma.J Nucl Med 1995; 36: 1784–1789.

    PubMed  Google Scholar 

  25. Palmedo H, Schomburg A, Gruenwald F, Mallmann P, Krebs D, Biersack HJ. Scintimammography with Tc-99m MIBI in suspicious breast lesions.J Nucl Med 1996; 37: 626–630.

    PubMed  Google Scholar 

  26. Taillefer R, Robidoux A, Lambert R, Turpin S, Laperrière J. Tc-99m sestamibi prone scintimammography to detect primary breast cancer and axillary lymph node involvement.J Nucl Med 1995; 36: 1758–1765.

    PubMed  Google Scholar 

  27. Tiling R, Kress K, Pechmann M, Pfluger T, Knesewitsch P, Tatsch K, Hahn K. Integrated diagnosis of breast tumors: semiquantitative Tc-99m sestamibi imaging versus dynamic MRI [abstract]J Nucl Med 1994; 35: 51.

    PubMed  Google Scholar 

  28. Waxman A, Nagaraj N, Ashok G, Khan S, Memsic L, Yadegar J, Silberman A, Jochelson M, Katz R, Phillips E. Sensitivity and specificity of Tc-99m MIBI in the evaluation of primary carcinoma of the breast: comparison of palpable and non-palpable lesions with mammography [abstract].J Nucl Med 1994; 35: 78.

    Google Scholar 

  29. Nagaraj N, Waxman A, Ashok G, Khan S, Memsic L, Yadegar J, Phillips E. Comparison of SPECT and planar Tc-99m sestamibi imaging in patients with carcinoma of the breast [abstract].J Nucl Med 1994; 35: 934.

    Google Scholar 

  30. Chin ML, Kronauge JF, Piwnica-Worms D. Effect of mitochondrial and plasma membrane potentials on accumulation of hexakis 2-methoxyisobutylisonitrile technetium in cultured mouse fibroblasts.J Nucl Med 1990; 31: 1646–1653.

    PubMed  Google Scholar 

  31. Maublant JC, Zhang Z, Rapp M, Ollier M, Michelot J, Veyre A. In vitro uptake of technetium-99m teboroxime in carcinoma cell lines and normal cells: comparison with technetium99m sestamibi and thallium-201.J Nucl Med 1993; 34: 1949–1952.

    PubMed  Google Scholar 

  32. Khalkhali I, Cutrone JA, Mena I, Diggles L, Khalkhali S, Venegas R, Klein S. The usefulness of scintimammography (SMM) in patients with dense breasts on mammogram [abstract]J Nucl Med 1995; 36: 52.

    Google Scholar 

  33. Gilles R, Guenebretiere JM, Shapeero LG et al. Assessment of breast cancer recurrence with contrast-enhanced substraction MR-imaging: preliminary results in 26 patients.Radiology 1993; 188: 473–478.

    PubMed  Google Scholar 

  34. Hilleren DJ, Anderson IT, Lindholm K, Linnell FS. Invasive lobular carcinoma: mammographic findings in a 10-year-experience.Radiology 1991; 178: 149–154.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmedo, H., Grünwald, F., Bender, H. et al. Scintimammography with technetium-99m methoxyisobutylisonitrile: comparison with mammography and magnetic resonance imaging. Eur J Nucl Med 23, 940–946 (1996). https://doi.org/10.1007/BF01084368

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01084368

Key words

Navigation