Skip to main content
Log in

PET: A biological imaging technique

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Like in vivo autoradiography, PET provides a means to image and measure rates of biological processes throughout the distributed and interrelated systems of the entire living brain. In addition, both techniques can track and image the functional interactions of the brain with other systems throughout the entire body. Technological advances are yielding higher image spatial resolution and “Electronic generators” for automated synthesis of positron labeled compounds. The expanding number of labeled compounds (>500) is providing a growing number of biological assays (i.e., substrate metabolism, pre and post synaptic processes, enzyme activity, interaction of medical and illicit drugs with biological systems of the brain, immune system, membrane processes). Studies of normal cerebral function focus on mapping evoked responses of various components of motor, visual, somatosensory, memory and cognitive functions. Cerebral development, neuronal plasticity, and compensatory reorganization to lesions or surgery are active areas of investigation. Various types of assays have been used to identify specific biological alterations, map progression and determine therapeutic responses in a wide variety of neuropsychiatric disorders and drug abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Phelps, M. E., Hoffman, E. J., Mullani, N. A., and Ter-Pogossian, M. M. 1975. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl Med. 16:210–233.

    Google Scholar 

  2. Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlack, C. S., Pettigrew, K. D., Salcurada, O., and Shinohara, M. 1977. The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem. 28:897–916.

    Google Scholar 

  3. Ido, T., Wan, C-N., Casella, J. S., Fowler, J. S., Wolf, A., Reivich, M., and Kuhl, D. E. 1978. Labeled 2-deoxy-D-glucose analogs: 18-F labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose, and14C-2-deoxy-2-fluoro-D-glucose. J Label Compds Radiopharm. 14:175–183.

    Google Scholar 

  4. Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., and Kuhl, D. E. 1979. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 6:371–388.

    Google Scholar 

  5. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M. E., Ido, T., Casella, V., Hoffman, E., Alavi, A., and Sokoloff, L. 1979. The (18F) fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 44:127–137.

    Google Scholar 

  6. Huang, S. C., Phelps, M. E., Hoffman, E. J., Sideris, K., Selin, C., and Kuhl, D. E. 1980. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 238:E69–82.

    Google Scholar 

  7. Fowler, J. S., and Wolf, A. P. 1986. Positron emitter-labeled compounds. Pages 391–450, in: Phelps, M. E., Mazziotta, J. C., Schelbert, H. R. (eds.). Positron Emission Tomography and Autoradiography: principles and applications in the brain and heart.

  8. Kety, S. S., and Schmidt, C. F. 1948. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 27:476–483.

    Google Scholar 

  9. Jones, T., Chesler, D. A., and Ter-Pogossion, M. M. 1976. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol. 49:339–343.

    Google Scholar 

  10. Farde, L., Hakan, H., Ehrin, E., and Sedvall, G. 1986. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231:258–261.

    Google Scholar 

  11. Mintun, M. A., Raichle, M. E., Kilbourn, M. R., Wooten, G. F., and Welch, M. J. 1984. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann. Neurol. 15:217–227.

    Google Scholar 

  12. Perlmutter, J. S., Larson, K. B., Raichle, M. E., Markham, J., Mintun, M. A., Kilbourn, M. R., and Welch, M. J. 1986. Strategies for in vivo measurement of receptor binding using positron emission tomography. J Cereb Blood Flow Metab. 6:154–169.

    Google Scholar 

  13. Frost, J. J. 1982. Pharmacokinetic aspects of the in vivo, noninvasive study of neuroreceptors in man. Pages 25–39, in: Eckelman W. C., (ed.), Receptor Binding Radiotracers, CRC Press, Boca Raton, FL, Vol. 2.

    Google Scholar 

  14. Wong, D. F., Gjedde, A., and Wagner, H. N., Jr. 1986. Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands. J. Cereb Blood Flow Metab. 6:137–146.

    Google Scholar 

  15. Huang, S. C., Barrio, J. R., and Phelps, M. E. 1986. Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. J. Cereb. Blood Flow Metab. 6:515–521.

    Google Scholar 

  16. Keen, R. E., Barrio, J. R., Huang, S. C., Hawkins, R. A., and Phelps, M. E. 1989. In vivo cerebral protein synthesis rates with leucyltransfer RNA used as a precursor pool: Determination of biochemical parameters to structure tracer kinetic models for positron emission tomography. J Cereb Blood Flow Metab. 9:429–445.

    Google Scholar 

  17. Hawkins, R. A., Huang, S. C., Barrio, J. R., Keen, R. E., Feng, D., Mazziotta, J. C., and Phelps, M. E. 1989. Estimation of local cerebral protein synthesis rates with L-[1-11C] leucine and PET: Methods, model and results in animals and humans. J. Cereb Blood Flow Metab. 9:446–460.

    Google Scholar 

  18. Fowler, J. S., MacGregor, R. R., Wolf, A. P., Arnett, C. D., Dewey, S. L., Schyler, D., Logan, I., Smith, M., Sachs, H., Aquilonius, S. M., Bjurling, P., Halldin, C., Hartvig, P., Leenders, K. L., Lundqvist, H., Oreland, L., Stalnacke, C. G., and Langstrom, B. 1987. Mapping human brain monoamine oxidase A and B with11C-labeled suicide inactivators and PET. Science. 235:481–485.

    Google Scholar 

  19. Arnett, C. D., Flowler, J. S., MacGregor, R. R., Schlyer, D. J., Wolf, A. P., Langstrom, B., and Halldin, C. 1987. Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using L-[11C] deprenyl. J Neurochem. 49:522–527.

    Google Scholar 

  20. Barrio, J. R. 1986. Biochemical principles in radiopharmaceutical design and utilization. Pages 451–492, in: Phelps, M. E., Mazziotta, J. C., Schlebert, H. R. (eds.). Positron Emission Tomography and Autoradiography. Raven Press, New York.

    Google Scholar 

  21. Huang, S. C., and Phelps, M. E. 1986. Principles of tracer kinetic modeling. In:Positron Emission Tomography and Autoradiography. Phelps, M. E., Mazziotta, J. C., Schelbert, H. R. (Eds). Raven Press, New York. pp 287–346.

    Google Scholar 

  22. Phelps, M. E., Hoffman, E. J., Mullani, N. A., Higgins, C. S., and Ter-Pogossian, M. M. 1976. Design considerations for a positron emission transaxial tomography (PETT III). IEEE Nucl Sci. NS-23:516–522.

    Google Scholar 

  23. Phelps, M. E., Hoffman, E. J., Huang, S. C., and Kuhl, D. E. 1978. ECAT: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals. J Nucl Med. 19:635–647.

    Google Scholar 

  24. Hoffman, E. J., and Phelps, M. E. 1986. Positron emission tomography: Principles and Quantitation.In Phelps, M. E., Mazziotta, J. C. and Schelbrt, H. R. (eds).Position Emission Tomography and Autoradiography. Raven Press, New York, pp 237–286.

    Google Scholar 

  25. Townsend, D. W., Spinks, T., Jones, T., Geissbuhler, A., Defrise, M., Gilardi, M. C., and Heather, J. 1989. Three dimensional reconstruction of PET data from multi-ring camera. IEEE. NS-36, 1056–1061.

    Google Scholar 

  26. Phelps, M. E., and Mazziotta, J. C. 1985. Positron emission tomography: human brain function and biochemistry. Science. 228:799–809.

    Google Scholar 

  27. Mazziotta, J. C., and Phelps, M. E. 1986. Positron Emission Tomography of the Brain. Pages 493–580.In Phelps, M. E., Mazziotta, J. C., and Schelbert, H. R. (eds). Positron Emission Topography and Autoradiography. Raven Press, New York.

    Google Scholar 

  28. Raichle, ME. 1983. Positron emission tomography.Ann Rev Neurosci. 6:249–268.

    Google Scholar 

  29. Reivich, M., and Alavi, A., (ed.) 1985. Positron Emission Tomography, Alan R. Liss, Inc., New York.

    Google Scholar 

  30. Phelps, M. E., Kuhl, D. E., and Mazziotta, J. C. 1981. Metabolic mapping of the brain's response to visual stimulation: studies in humans. Science. 211:1445–1448.

    Google Scholar 

  31. Phelps, M. E., Mazziotta, J. C., Kuhl, D. E., Nuwer, M., Packwood, J., Metter, J., and Engel, J., Jr. 1981. Tomographic mapping of human cerebral metabolism: visual stimulation and deprivation. Neurology. 31:517–529.

    Google Scholar 

  32. Greenberg, J. H., Reivich, M., Alavi, A., Hand, P., Rosenquist, A., Rintelman, W., Stein, A., Tusa, R., Dann, R., Christman, O., and Fowler, J. 1981. Metabolic mapping of functional activity in human subjects with the (18F) fluorodeoxyglucose technique. Science. 211:678–680.

    Google Scholar 

  33. Mazziotta, J. C., Phelps, M. E., Carson, R. E., and Kuhl, D. E. 1982. Tomographic mapping of human cerebral metabolism: auditory stimulation. Neurology. 32:921–937.

    Google Scholar 

  34. Fox, P. T., and Raichle, M. E. 1985. Stimulus rate determines regional brain blood flow in striate cortex. Ann. Neurol. 17:303–305.

    Google Scholar 

  35. Fox, P. T., Burton, H., and Raichle, M. E. 1987. Mapping human somatosensory cortex with positron emission tomography. J. Neurosurg. 67:34–43.

    Google Scholar 

  36. Fox, P. T., Mintun, M., Raichle, M. E., Miezin, F. M., Allman, J. M., and Van Essen, D. C. 1986. Mapping human visual cortex with positron emission tomography. Nature. 323:806–809.

    Google Scholar 

  37. Friston, K. J., Passingham, R. E., Nutt, J. G., Heather, J. D., Sawle, G. V., and Frackowiak, R. S. J. 1989. Localization in PET images: direct fitting of the intercommissural (AC-PC) line. J Cereb Blood Flow Metab. 9:690–695.

    Google Scholar 

  38. Grafton, S. T., Woods, R. P., Mazziotta, J. C., and Phelps, M. E. Somototopic mapping of the primary motor cortex in man: activation studies with cerebral blood flow and PET. J Neurophysiol. (In Press).

  39. Huang, S. C., Phelps, M. E., Hoffman, E. J., and Kuhl, D. E. 1981. Error sensitivity of fluorodeoxyglucose method for measurement of cerebral metabolic rate of glucose. J Cereb Blood Flow Metabol. 1:391–402.

    Google Scholar 

  40. Fox, P. T., Mintun, M. A., Reiman, E. M., and Raichle, M. E. 1988. Enhanced detection of focal brain responses using intersubject averaging and change distribution analysis of substracted PET images. J Cereb Blood Flow Metab. 8:642–653.

    Google Scholar 

  41. Chugani, H. T., and Phelps, M. E. 1986. Maturation changes in cerebral function in infants determined by [18F] FDG positron emission tomography. Science. 231:840–843.

    Google Scholar 

  42. Chugani, H. T., Phelps, M. E., and Mazziotta, J. C. 1987. Positron emission tomography study of human brain functional development. Ann Neurol. 22:487–497.

    Google Scholar 

  43. Huttenlocher, P. R. 1979. Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Res. 163:195–205.

    Google Scholar 

  44. Huttenlocher, P. R., de Courten, C., Gray, L. J., and van der Loos, H. 1982. Synaptogenesis in human visual cortex-evidence for synapse elimination during normal development. Neurosci Lett. 33:247–252.

    Google Scholar 

  45. Chugani, H. T., Hovda, D. A., Villablanca, J. R., Phelps, M. E., and Xu W. F. 1991. Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat. J Cereb Blood Flow Metab. 11:35–47.

    Google Scholar 

  46. Engel, J, Jr., Henry, T. R., Risinger, M. W., Mazziotta, J. C., Sutherling, W. W., Levesque M. F., and Phelps, M. E. 1990. Presurgical evaluation for partial epilepsy: relative contributions of chronic depth-electrode recording versus FDG-PET and scalp sphenoidal ictal EEG. 40:1670–1677.

  47. Chugani, H. T., Shewmon, D. A., Peacock, W. J., Shields, W. D., Mazziotta, J. C., and Phelps, M. E. 1988. Surgical treatment of intractable neonatal onset seizures: the role of positron emission tomography. Neurol. 38:1178–1188.

    Google Scholar 

  48. Chugani, H. T., Shields, W. D., Shewmon, D. A., Olson, D. M., Phelps, M. E., and Peacock, W. J. 1990. Infantile spasms. I: PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol. 27:406–413.

    Google Scholar 

  49. Kuhl, D. E., Phelps, M. E., Markham, C. H., Metter, E. J., Riege, W. H., and Winter, J. 1982. Cerebral metabolism and atrophy in Huntington's disease determined by FDG and computed tomography scan. Ann Neurol. 12:425–434.

    Google Scholar 

  50. Mazziotta, J. C., Phelps, M. E., Huang, S. C., Baxter, L. R., Pahl, J., Riege, W., Kuhl, D. E., Wapenski, J., and Markham, C. 1987. Cerebral glucose utilization reductions in clinically asymptomatic subjects at risk for Huntington's disease. New Eng J Med. 316:357–362.

    Google Scholar 

  51. Hawkins, R. A., Mazziotta, J. C., and Phelps, M. E. 1987. Wilson's disease studied with FDG and positron emission tomography. Neurol. 37:1707–1711.

    Google Scholar 

  52. Mazziotta, J. C., Frackowiak, R. S. J., and Phelps, M. E. Positron Emission Tomography in the diagnosis of Alzheimer's disease. JAMA (Submitted).

  53. Rhodes, C. G., Wise, R. J., Gibbs, J. M., Frackowiak, R. S., Hatazawa, J., Palmer, A. J., Thomas, D. G., and Jones, T. 1983. In vivo distribution of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol. 14:614–626.

    Google Scholar 

  54. Di Chiro, G. 1985. Diagnostic and prognostic value of positron emission tomography using 18F-fluorodeoxyglucose in brain tumors. in: Positron emission tomography. Reivich M, Alavi A. (ed.) Alan R. Liss Pub, New York. pp 291–309.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Louis Sokoloff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phelps, M.E. PET: A biological imaging technique. Neurochem Res 16, 929–940 (1991). https://doi.org/10.1007/BF00965836

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965836

Key Words

Navigation