Skip to main content
Log in

Review of imaging techniques for the diagnosis of breast cancer: a new role of prone scintimammography using technetium-99m sestamibi

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Imaging techniques currently used for the diagnosis of breast cancer are reviewed and compared. Besides mammography, magnetic resonance imaging, positron emission tomography, and thallium-201 scintimammography, a new role of technetium-99m sestamibi scintimammography is discussed. It is concluded that while mammography remains the procedure of choice in screening asymptomatic women for breast cancer, other imaging methods play an important role in detecting malignancies in symptomatic patients.99mTc-sestamibi scintimammography has high sensitivity and improves the specificity of conventional mammography for the detection of breast cancer; with this technique, prone imaging is preferable to supine imaging.99mTc-sestamibi scintimammography thus deserves further study as a screening technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson I, Aspergen K, Janzow L et al. Mammographic screening and mortality from breast cancer: the Malmo Mammographic Screening Trial.Br Med J 1988;297:943–948.

    Google Scholar 

  2. Sickle WA. Mammographic features of 300 consecutive non-palpable breast cancers.AJR 1986;146:661–663.

    Google Scholar 

  3. Parker SH, Lovin JD, Jobe WF, Luethke JM, Hopper KD, Yakes WF, Burke BJ. Stereotactic breast biopsy with a biopsy gun.Radiology 1990;176:741–747.

    Google Scholar 

  4. Kopans DB. Positive predictive value of mammography.AJR 1992;158:521–526.

    Google Scholar 

  5. Forsyth RA. The mathematics of screening mammography.Med Hypotheses 1988;26:21–24.

    Google Scholar 

  6. Eddy DM. Screening for breast cancer.Ann Intern Med 1989;111:389–399.

    Google Scholar 

  7. Schmidt JG. The epidemiology of mass breast cancer screening — a plea for a valid measure of benefit.J Clin Epidemiol 1990;43:215–225.

    Google Scholar 

  8. Moskowitz M. Cost of screening for breast cancer.Radiol Clin North Am 1987;25:1031–1037.

    Google Scholar 

  9. Strax P, Martin G. Principles of mass screening for breast cancer.Cancer Detect Prev 1987;10:229–232.

    Google Scholar 

  10. Shapiro S. A dissent from Dr. Schmidt's appraisal of evidence on breast cancer screening.J Clin Epidemiol 1990; 43:227–234.

    Google Scholar 

  11. Humphry LL, Ballard DJ. Early detection of breast cancer in women.Prev Pract 1989;16:115–132.

    Google Scholar 

  12. Polli RS, Mettler FA, Barstow SA, Moradian G, Moskowitz M. Occult breast cancer: prevalence and radiographic detectability.Radiology 1987;163:459–462.

    Google Scholar 

  13. Niloff PH, Sheiner NM. False-negative mammograms in patients with breast cancer.Can J Surg 1981;24:50–52.

    Google Scholar 

  14. Boyd NF, Wolfson C, Moskowitz M, Carlile T, Petitclerc C, Farri HA, Ry SL. Observer variation in classification of mammographic parenchymal patterns.J Chron Dis 1986; 39:465–472.

    Google Scholar 

  15. Baines CJ, McFarlance DV, Wall C. Audit procedures in the national breast screening study: mammography interpretation.J Can Assoc Radiol 1986;37:256–260.

    Google Scholar 

  16. Vineis P, Sinisterero G, Temporelli A, Azzoni L, Bigo A, Burke P. Inter-observer variability in the interpretation of mammograms.Tumori 1988;74:275–279.

    Google Scholar 

  17. Baker LH. Breast Cancer Detection Demonstration Project: five-year summary report.CA 1982;32:194–225.

    Google Scholar 

  18. Bovee WM, Creyghton JH, Getrever KW, et al. NMR relaxation and images of human breast tumors in vitro.Philos Trans R Soc Lond [Biol] 1980;289:535–536.

    Google Scholar 

  19. Mansfield P, Morris PG, Ordidye R. Carcinoma of the breast: imaging by NMR.Br J Radiol 1979;52:242–243.

    Google Scholar 

  20. Harms SE, Flamig DP, Hesley KL et al. MR imaging of the breast with rotating delivery of excitation of resonance: clinical experience with pathological correlation.Radiology 1993;187:493–501.

    Google Scholar 

  21. Harms SE, Flamig DP, Hesley KL et al. Fat-suppressed three-dimensional MR imaging of the breast.Radiographics 1993;13:247–267.

    Google Scholar 

  22. Rosen PP, Fracchia AA, Urban JA, Schottenfeld D, Robbins GF. “Residual” mammary carcinoma following simulated partial mastectomy.CA 1975;35:739–747.

    Google Scholar 

  23. Schwartz GF, Patchesfsky AS, Feig SA, Shaber GS, Schwartz AB. Multicenttricity of nonpalpable breast cancer.CA 1980;45:2913–2916.

    Google Scholar 

  24. Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-D-glucose.Radiology 1991;179:765–770.

    Google Scholar 

  25. Yonekura Y, Benua RS, Brill AB, et al. Increased accumulation of 2-deoxy-2-[18F]fluoro-D-glucose in liver metastases from colon carcinoma.J Nucl Med 1982;23:1133–1137.

    Google Scholar 

  26. Paul R, Ahonen A, Roeda D, Nordman E. Imaging of hepatoma with18F-fluorodeoxyglucose [letter].Lancet 1985;I:50–51.

    Google Scholar 

  27. Kern KA, Brunetti A, Norton JA, et al. Metabolic imaging of human extremity musculoskeletal tumors by PET.J Nucl Med 1988;29:181–186.

    Google Scholar 

  28. Strauss LG, Clorius JH, Schlag P, et al. Recurrence of colorectal tumors: PET evaluation.Radiology 1989;170:329–332.

    Google Scholar 

  29. Lowe VJ, Hoffman JM, Patz EF, Paine S, Burrows P, Coleman RE. Differentiation of benign and malignant pulmonary opacities with FDG-PET [abstract].J Nucl Med 1993;34(5):21P.

    Google Scholar 

  30. Gupta N, Dewan N, Frank A, Mailliard J, Scott W. Pre-surgical evaluation of patients with suspected malignant solitary pulmonary nodules (SPN) using PET-FDG imaging [abstract].J Nucl Med 1993;34(5):20P.

    Google Scholar 

  31. Lilien D. Personal communication. Newport Beach, Calif., 1993.

  32. Tse NY, Hoh Ck, Hawkins RA, et al. The application of positron emission tomographic imaging with fluorodeoxyglucose to the evaluation of breast disease.Ann Surg 1992;216:27–34.

    Google Scholar 

  33. Cox PH, Belfer AJ, van der Pompe WB. Thallium 201 chloride uptake in tumours, a possible implication in heart scintigraphy.Br J Radiol 1976;49:767–768.

    Google Scholar 

  34. Caner B, Kitapçi M, Aras T, Erbengi G, Ugur Ö, Bekdik C. Increased accumulation of hexakis (2-methoxyisobutylisonitrile) technetium (I) in osteosarcoma and its metastatic lymph nodes.J Nucl Med 1991;32:1977–1978.

    Google Scholar 

  35. O'Tuama LA, Packard AB, Treves ST. SPECT imaging of pediatric brain tumor with hexakis (methoxyisobutylnitrile) technetium (I).J Nucl Med 1990;31:2040–2041.

    Google Scholar 

  36. Hisada K, Tonami N, Miyamae T, et al. Clinical evaluation of tumor imaging with201Tl chloride.Radiology 1978; 129:497–500.

    Google Scholar 

  37. Sluyser M, Hoefnagel CA. Breast carcinomas detected by thallium-201 scintigraphy.Cancer Lett 1988;40:161–168.

    Google Scholar 

  38. Waxman AD, Ramanna L, Memsic LD, Foster CE, Silberman AW. Thallium scintigraphy in the evaluation of mass abnormalities of the breast.J Nucl Med 1993;34:18–23.

    Google Scholar 

  39. Hassan IM, Sahweil A, Constantinides C, et al. Uptake and kinetics of Tc-99m hexakis 2-methoxy isobutyl isonitrile in benign and malignant lesions in the lungs.Clin Nucl Med 1989;14:333–340.

    Google Scholar 

  40. Carvalho PA, Chiu ML, Kronaug JF, et al. Subcellular distribution and analysis of Tc-99m MIBI in isolated perfused rat hearts.J Nucl Med 1992;33:1516–1521.

    Google Scholar 

  41. Delmon-Mongeon LI, Piwnica-Worms D, Van der Abbeele AD, Holman BL, Davison A, Jones AG. Uptake of the cation hexakis (2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma cell lines in vitro.Cancer Res 1990; 50:2198–2202.

    Google Scholar 

  42. Muller ST, Guth-Tougelides B, Creutzig H. Imaging of malignant tumors with Tc-99m MIBI SPECT [abstract].J Nucl Med 28:562.

  43. Muller ST, Reiners C, Pass M, et al. Technetium-99m MIBI and thallium-201 uptake in bronchial carcinoma [abstract].J Nucl Med 1989;33:845.

    Google Scholar 

  44. Maublant JC, Zheng Z, Rapp M, Olier M, Michelot J, Veyre A. In vitro uptake of Tc-99m texoboroxime in carcinoma cell lines and normal cell lines: comparison with Tc-99m sestamibi and thallium-201.J Nucl Med 1993;34:1949–1952.

    Google Scholar 

  45. Khalkhali I, Mena I, Jouanne E, et al. Pronce scintimammography in patients with suspicion of breast cancer.J Am Coll Surg 1994; (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalkhali, I., Mena, I. & Diggles, L. Review of imaging techniques for the diagnosis of breast cancer: a new role of prone scintimammography using technetium-99m sestamibi. Eur J Nucl Med 21, 357–362 (1994). https://doi.org/10.1007/BF00947973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00947973

Key words

Navigation