Skip to main content
Log in

Quantification of regional extravascular lung water in dogs with positron emission tomography, using constant infusion of 15O-labeled water

  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Continuous infusion of 15O-labeled water allows a quantitative measurement of the total water pool in the chest region by positron emission tomography (PET). By subsequent inhalation of 11CO the intravascular space (blood pool) can be quantitated as well. After a suitable normalization of the intravascular activities the extravascular water can be determined by subtraction of the blood pool from the water pool. The regional extravascular lung water distribution can be visualized in tomographic slices. The method was validated in an animal experiment using five dogs. They were measured before and after induction of a lung edema by IV injection of oleic acid. The increase of extravascular lung water was monitored by the thermodye-dilution method (TDD). The correlation of extravascular lung water as measured by TDD with PET measurements is good (r=0.94). The PET values agree also with gravimetric lung water determinations. An absolute quantitation of regional extravascular lung water is possible after absorption correction of the PET data via transmission measurements and calibration of the camera system. The uncertainty in the absolute quantification is±20%. In the experiments described here the mean extravascular lung water was 0.13 g/cm3 before and 0.25 g/cm3 after induction of lung edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahluwalia BD, Brownell GL, Hales CA, Kazemi H (1981) An index of pulmonary edema measured with computed tomography. J Comput Assist Tomogr 5:690–694

    Google Scholar 

  • Amis TC, Jones T (1980) Krypton-81 m as a flow tracer in the lung: Theory and quantitation. Bull Eur Physiopathol Respir 16:249–259

    Google Scholar 

  • Binswanger RO, Rösler H, Noelpp U, Matter L, Haertel M (1978) The bedside determination of extravascular lung water. Eur J Nucl Med 3:109–114

    Google Scholar 

  • Chait A (1972) Interstitial pulmonary edema. Circulation 45:1323–1330

    Google Scholar 

  • Chinard FP, Enns T, Nolan MF (1962) Pulmonary extravascular water volumes from transit time and slope data. J Appl Physiol 17:179–183

    Google Scholar 

  • Clark JC, Buckingham PD (1975) Short-lived radioactive gases for clinical use. Butterworth, London

    Google Scholar 

  • Cooper JD, McGullogh NC, Lowenstein E (1972) Determination of pulmonary extravascular lung water using oxygen-15-labeled water. J Appl Physiol 33:842–845

    Google Scholar 

  • Critchley M, Prichard H, Grime JS, Patten M, Ansell I (1981) Radionuclide assessment of extravascular lung water in minimal pulmonary oedema. Clin Radiol 32:607–609

    Google Scholar 

  • Crone C (1963) The permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 58:292–305

    Google Scholar 

  • Döhring W, Linke G, Stender H-St (1981) CT densiometry in the lung. In: Donner WM, Heuck FHW (eds) Radiology today. Springer, Berlin p 99

    Google Scholar 

  • Fazio F, Jones T, McAthur CGC, Rodes CG, Steiner RE, Hughes JMB (1976) Measurement of regional pulmonary oedema in man using radioactive water (H2 15O). Br J Radiol 49:393–397

    Google Scholar 

  • Frackowiak RSJ, Lenzi G (1982) Physiological measurement in the brain: From potential to practice. In: Ell PC, Holman BL (eds) Computed emission tomography. Oxford University Press, New York

    Google Scholar 

  • Giuntini C (1971) Theoretical considerations on the measure of pulmonary blood volume and extravascular lung water in man. Bull Eur Physiopathol Respir 7:1125–1160

    Google Scholar 

  • Goreski CA, Cronin RFP, Wangel BE (1969) Indicator dilution measurements of extravascular water in the lungs. J Clin Invest 48:487–501

    Google Scholar 

  • Hales CA, Kanarek DJ, Ahluwalia B, Latty A, Erdmann J, Javaheri S, Kazemi H (1981) Regional edema formation in isolated perfused dog lungs. Circ Res 48:121–127

    Google Scholar 

  • Harper PV, Wickland T (1981) 15O-Labeled water for continuous intravenous administration (abstr). J Labeled Compounds Radiopharm 18:186

    Google Scholar 

  • Helmeke H-J, Schober O, Lehr L, Junker D, Meyer G-J, Fitschen J, Bossaller C, Hundeshagen H (1982) Measurements of regional lung water with 15O-labeled water and C15O-labeled carboxyhemoglobin. In: Höfer R, Bergman H (eds) Radioaktive Isotope in Klinik und Forschung, vol 15, part 2. Verlag H. Egermann, Wien, p 635

    Google Scholar 

  • Hnatowich DJ, Kulprathipanja S, Evans G, Elmaleh D (1979) A comparison of positron emitting blood pool imaging agents. Int J Appl Radiat Isotopes 30:335–340

    Google Scholar 

  • Hoffman EJ, Huang S-C, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3:299–308

    Google Scholar 

  • Huang S-C, Hoffman EJ, Phelps ME, Kuhl DE (1979a) Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr 3:804–814

    Google Scholar 

  • Huang S-C, Phelps ME, Hoffman EJ, Kuhl DE (1979b) A theoretical study of quantitative flow measurements with constant infusion of shortlived isotopes. Phys Med Biol 24:1151–1161

    Google Scholar 

  • Huang S-C, Carson RE, Phelps ME, Hoffman EJ, Schelbert HR, Kuhl DE (1981) A boundary method for attenuation correction in positron computed tomography. J Nucl Med 22:627–637

    Google Scholar 

  • Jones T, Clark JC, Buckingham PD, Grant BJB, Hughes JMB, (1972) The use of oxygen-15-labeled water for the measurements of pulmonary extravascular water (abstr). Br J Radiol 45:630

    Google Scholar 

  • Jones T, Jones HA, Rhodes CG, Buckingham PD, Hughes JMB (1976) Distribution of extravascular fluid volumes in isolated perfused lungs measured with H2 15O. J Clin Invest 57:706–713

    Google Scholar 

  • Lammertsma AA, Jones T, Frackowiak RSJ, Lenzi G-L (1981) A theoretical study of the steady state model for measuring regional cerebral blood flow and oxygen utilization using oxygen-15. J Comput Assist Tomogr 5:544–550

    Google Scholar 

  • Lewis FR, Elings VB, Sturm JA (1979) Bedside measurements of lung water. J Surg Res 27:250–261

    Google Scholar 

  • Lewis FR, Elings VB, Hill SL, Christensen JM (1982) The measurement of extravascular lung water by thermal-green dye indicator dilution. In: Ann NY Acad Sci 384:394–410

  • Mazziotta JC, Phelps ME, Plummer D, Kuhl DE (1981) Quantitation in positron emission computed tomography: 5. Physicalanatomical effects. J Comput Assist Tomogr 5:734

    Google Scholar 

  • McAthur CGC, Rhodes CG, Swinburne AJ, Heather JD, Hughes JMB (1980) Measurement of regional lung water using gamma emitting tracers. Bull Eur Physiopathol Respir 16:321–333

    Google Scholar 

  • Meyer G-J (1982) Some aspects of quality control for cyclotron produced short-lived radiopharmaceuticals. Radiochimica Acta 30:175–184

    Google Scholar 

  • Meyer G-J, Harms T, Hundeshagen H (1982) An automated gas handling system for 11C-labeled CO, CO2, and HCN. J Labeled Compounds Radiopharm 19:1362–1363

    Google Scholar 

  • Nichols AB, Cochavi S, Hales CA, Strauss W, McKusick KA, Waltman AC, Beller GA (1978) Scintigraphic detection of pulmonary emboli by serial positron imaging of inhaled 15O-labeled carbon dioxide. N Engl J Nucl Med 299:279–284

    Google Scholar 

  • Nichols AB, Beller GA, Cochavi S, McKusick KA, Straus HW (1980) Detection of pulmonary emboli by positron imaging of inhaled 15O-labeled carbon dioxide. Semin Nucl Med 10:252–258

    Google Scholar 

  • Pearce MD, Lamashita J, Beacell J (1965) Measurement of pulmonary edema. Circ Res 16:482–488

    Google Scholar 

  • Pistolesi M, Giuntini C (1978) Assessment of extravascular lung water. Radiol Clin North Am 16:551–574

    Google Scholar 

  • Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    Google Scholar 

  • Rhodes CG, Wollmer P, Fazio F, Jones T (1981) Quantitative measurement of regional extravascular lung densitiy using positron emission and transmission tomography. J Comput Assist Tomogr 5:783–791

    Google Scholar 

  • Schober O, Lehr L, Hundeshagen H (1982) Bromide space, total body water and sick cell syndrome. Eur J Nucl Med 7:14–15

    Google Scholar 

  • Snashall PD, Hughes JMB (1981) Lung water balance. Rev Physiol Phamacol 89:3

    Google Scholar 

  • Snashall PD, Keyes JS, Morgan BM, McAnulty RJ, Mitchell-Heggs PF McIvor JM, Howlett KA (1981) The radiographic detection of acute pulmonary edema. A comparison of radiographic appearances, densiometry and lung water in dogs. Br J Radiol 54:288

    Google Scholar 

  • Staub NG (1974) Pulmonary edema. Physiol Rev 54:678–811

    Google Scholar 

  • Sturm JA, Oestern HJ, Maghsudi M, Pfiffer Jr. O, Joachim H (1982) Die gravimetrische Überprüfung der klinischen Lungenwasermessungen. In: Weller S (ed) Chirurgisches Forum ′82 für experimentelle und klinische Forschung. Springer, Berlin, p 49

    Google Scholar 

  • Sugerman HJ, Strash AM, Hirsch JI, Shirazi L, Tatum JL, Mathers JAL, Greenfeld LJ (1982) Scintigraphy and radiography in oleic acid pulmonary microvascular injury: Effects of positive end-expiratory pressure (PEEP). J Trauma 22:179–185

    Google Scholar 

  • Wegener OH, Koeppe P, Oeser H (1978) Measurement of lung density by computed tomography. J Comput Assist Tomogr 2:263–273

    Google Scholar 

  • Weinreich R, Ritzl F, Feinendegen LE, Schnippering HG, Stöcklin G (1975) Fixation, retention, and exhalation of carrier free 11C-labeled carbon monoxide by man. Radiat Environ Biophys 12:271–280

    Google Scholar 

  • Zierler KL (1963) Theoretical basis of indicator dilution methods for measuring flow and volume. Circ Res 10:393

    Google Scholar 

  • Zimmermann JE, Goodman LR, Andre ACSt, Wyman AC (1982) Radiographic detection of mobilizable lung water: The graviational shift test. AJR 138:59–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, G.J., Schober, O., Bossaller, C. et al. Quantification of regional extravascular lung water in dogs with positron emission tomography, using constant infusion of 15O-labeled water. Eur J Nucl Med 9, 220–228 (1984). https://doi.org/10.1007/BF00448543

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00448543

Keywords

Navigation