Skip to main content
Log in

Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type?

  • Original Investigations
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Summary

Global cerebral blood flow, oxidative brain metabolism, and the cerebral arteriovenous differences of amino acids and ammonia were studied in 20 clinically diagnosed patients with early-onset dementia of Alzheimer type (DAT). Eleven healthy age-matched subjects and 15 healthy young volunteers served as controls. The most prominent abnormality in patients with early-onset DAT was a 44% reduction in the cerebral metabolic rate of glucose and a fourfold increase of lactate production, whereas cerebral blood flow and the cerebral metabolic rate of oxygen were found not to be altered. The cerebral amino-N balance substantially changed in patients with early-onset DAT, showing a massive loss of amino acids and ammonia from the brain, which was indicative of excess protein catabolism due to cell degeneration in the acutely diseased brain. The abnormality found in glucose metabolism may suggest a perturbed control of glycolytic breakdown of glucose and its first oxidation step at the pyruvate dehydrogenase complex level, this thus being of pivotal significance in early-onset DAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiatr 64:146–148

    Google Scholar 

  2. Alzheimer A (1911) Über eigenartige Krankheitsfälle des späteren Alters. Z Ges Neurol Psychiatr 4:356–385

    Google Scholar 

  3. Barkulis SS, Geiger A, Kawakita Y, Aguilar V (1960) A study of the incorporation of 14C derived from glucose into free amino acids of the brain cortex. J Neurochem 5:339–348

    Google Scholar 

  4. Benson DF, Kuhl DE, Hawkins RA, Phelps ME, Cummings JL, Tsai SY (1983) The fluorodeoxy-glucose18 F scan in Alzheimer's disease and multi infarct dementia. Arch Neurol 40:711–714

    Google Scholar 

  5. Bernsmeier A, Siemons K (1953) Die Messung der Hirndurchblutung mit der Stickoxydul-Methode. Pflügers Arch Gesamte Physiol 258:149–162

    Google Scholar 

  6. Bowen DM, Davison AN (1986) Biochemical studies of nerve cells and energy metabolism in Alzheimer's disease. Br Med Bull 42:75–80

    Google Scholar 

  7. Bowen DM, Smith CB, White P, Flack RHA, Carrasco LH, Gedye JL, Davison AN (1977) Chemical pathology of the organic dementias. II. Quantitative estimation of cellular changes in post-mortem brains. Brain 100:427–453

    Google Scholar 

  8. Bowen DM, White P, Spillane JA, Goodhardt MJ, Curzon G, Iwangoff P, Meier-Ruge W, Davison AN (1979) Accelerated ageing or selective neuronal loss as an important cause of dementia? Lancet I:11–14

    Google Scholar 

  9. Chase TN, Foster NL, Defio P, Di Chiro G, Brooks R, Patronas NJ (1983) Alzheimer's disease: local cerebral metabolism studies using the 18F-fluorodeoxy-positron emission tomography technique. In: Samuel D, Algeri S, Gershon S, Grimm VE, Toffano G (eds) Aging of the brain (Aging, vol. 22). Raven. New York, pp 143–154

    Google Scholar 

  10. Cutler NR, Haxby JV, Duara R, Grady CL, Kay AD, Kessler RM, Sundaram M, Rapoport SI (1985) Clinical history, brain metabolism, and neuropsychological function in Alzheimer's disease. Ann Neurol 18:298–309

    Google Scholar 

  11. Dekoninck WJ, Jaquy J, Joquet P, Noel G (1977) Cerebral blood flow and metabolism in senile dementia. In: Meyer JS, Lechner H, Reivich M (eds) Cerebral vascular disease. Excerpta Medica, Amsterdam, pp 29–32

    Google Scholar 

  12. Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, Di Chiro G (1983) Alzheimer's disease: focal cortical changes shown by positron emission tomography. Neurology 33:961–965

    Google Scholar 

  13. Foster NL, Chase TN, Mansi L, Brooks R, Fedio P, Patronas NJ, Di Chiro G (1984) Cortical abnormalities in Alzheimer's disease. Ann Neurol 16:649–654

    Google Scholar 

  14. Frackowiak RSJ, Pozzilli C, Legg NJ, DuBoulay GH, Marshall J, Lenzi GL, Jones T (1981) Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–778

    Google Scholar 

  15. Freyhan FA, Woodford RB, Kety SS (1951) Cerebral blood flow and metabolism in psychoses of senility. J Nerv Ment Dis 113:449–456

    Google Scholar 

  16. Geiger A, Kawakita Y, Barkulis SS (1960) Major pathways of glucose utilization in the brain in brain perfusion experiments in vivo and in situ. J Neurochem 5:323–338

    Google Scholar 

  17. Gottfries CG (1985) Transmitter deficits in Alzheimer's disease. Neurochem Int 7:565–566

    Google Scholar 

  18. Gottfries CG, Adolfsson R, Aquilonius SM, Carlsson A, Eckernäs SA, Nordberg A, Oreland L, Svennerholm L, Wiberg A, Winblad B (1983) Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiol Aging 4:261–271

    Google Scholar 

  19. Greenamyre JT, Penney JB, D'Amato CJ, Young AB (1987) Dementia of the Alzheimer's type: changes in hippocampal L- (3H) glutamate binding. J Neurochem 48:543–551

    Google Scholar 

  20. Gustafson L, Hagberg B (1975) Emotional behavior, personality changes and cognitive reduction in presenile dementia: related to regional cerebral blood flow. Acta Psychiatr Scand [Suppl] 257:38–71

    Google Scholar 

  21. Gustafson L, Risberg J (1974) Regional cerebral blood flow related to psychiatric symptoms in dementia with onset in the presenile period. Acta Psychiatr Scand 50:516–538

    Google Scholar 

  22. Gustafson L, Brun A, Ingvar DH (1977) Presenile dementia: clinical symptoms, pathoanatomical findings and cerebral blood flow. In: Meyer JS, Lechner H, Reivich M (eds) Cerebral vascular disease. Excerpta Medica, Amsterdam, pp 5–9

    Google Scholar 

  23. Hachinski VC, Iliff LD, Zilkha E, DuBoulay GH, McAllister VL, Marshall J, Ross-Russell RW, Symon L (1975) Cerebral blood flow in dementia. Arch Neurol 32:632–637

    Google Scholar 

  24. Haxby JV, Duara R, Grady CL, Culter NR, Rapoport SI (1985) Relations between neuropsychological and cerebral asymmetrics in early Alzheimer's disease. J Cereb Blood Flow Metabol 5:193–200

    Google Scholar 

  25. Hoyer S (1970) Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns. Klin Wochenschr 48:1239–1243

    Google Scholar 

  26. Hoyer S (1978) Blood flow and oxidative metabolism of the brain in different phases of dementia. In: Katzman R, Terry RD, Bick KL (eds) Alzheimer's disease senile dementia and related disorders (Aging, vol 7). Raven, New York, pp 219–226

    Google Scholar 

  27. Hoyer S (1980) Factors influencing cerebral blood flow, CMR-oxygen and CMR-glucose in dementia patients. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester, pp 252–257

    Google Scholar 

  28. Hoyer S (1982) The abnormally aged brain. Its blood flow and oxidative metabolism. A review — part II. Arch Gerontol Geriatr 1:195–207

    Google Scholar 

  29. Hoyer S (1985) Metabolism of the human brain: the principle and limitation of global measurements. In: Hartmann A, Hoyer S (eds) Cerebral blood flow and metabolism measurement. Springer, Berlin Heidelberg New York, pp 382–390

    Google Scholar 

  30. Hoyer S (1985) The effect of age on glucose and energy metabolism in brain cortex of rats. Arch Gerontol Geriatr 4:193–203

    Google Scholar 

  31. Hoyer S (1986) Senile dementia and Alzheimer's diseases. Brain blood flow and metabolism. Prog Neurosychopharmacol Biol Psychiatry 10:447–478

    Google Scholar 

  32. Iwangoff P, Armbruster R, Enz A, Meier-Ruge W, Sandoz P (1980) Glycolytic enzymes from human autoptic brain cortex: normally aged and demented cases. In: Roberts PJ (ed) Biochemistry of dementia. Wiley, Chichester, pp 258–262

    Google Scholar 

  33. Jaspers K (1959) Allgemeine Psychopathologie, 7th edn. Springer, Berlin Göttingen Heidelberg, pp 146–186

    Google Scholar 

  34. Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–483

    Google Scholar 

  35. Ladurner G, Ott EO, Perry PJ, Stix P, Schreyer H, Wiedner F, Lechner H (1977) Bilateral measurement of regional cerebral blood flow in dementia. In: Meyer JS, Lechner H, Reivich M (eds) Cerebral vascular disease. Excerpta Medica, Amsterdam, pp 10–13

    Google Scholar 

  36. Larsson T, Sjögren T, Jacobsen G (1963) Senile dementia. A clinical, sociomedical and genetic study. Acta Psychiatr Scand [Suppl] 167:13–259

    Google Scholar 

  37. Lassen NA, Klee A (1965) Cerebral blood flow determined by saturation and desaturation with Krypton85. Circ Res 16:26–32

    Google Scholar 

  38. Lassen NA, Munck O, Toffey ER (1957) Mental function and cerebral oxygen consumption in organic dementia. Arch Neurol Psychiatry 77:126–133

    Google Scholar 

  39. Lassen NA, Feinberg I, Lane MH (1960) Bilateral studies of cerebral oxygen uptake in young and aged normal subjects and in patients with organic dementia. J Clin Invest 39:491–500

    Google Scholar 

  40. Lyning-Tunell U, Lindblad BS, Malmlund HO, Persson B (1981) Cerebral blood flow and metabolic rate of oxygen, glucose, lactate, pyruvate, ketone bodies and amino acids. II. Presenile dementia and normal-pressure hydrocephalus. Acta Neurol Scand 63:337–350

    Google Scholar 

  41. Mann DMA, Yates PO, Marcyniuk B (1984) Alzheimer's presenile dementia, senile dementia of Alzheimer type and Down's syndrome in middle age form an age related continuum of pathological changes. Neuropathol Appl Neurobiol 10:185–207

    Google Scholar 

  42. Moore S, Stein WH (1954) Procedures for the chromatographic determination of amino acids on four per cent cross-linked sulfonated polystyene resins. J Biol Chem 211:893–906

    Google Scholar 

  43. Moore S, Stein WH (1954) A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem 211:907–913

    Google Scholar 

  44. O'Brien MD (1972) Somes aspects of cerebral blood flow in dementia. In: Meyer JS, Reivich M, Lechner H, Eiohhorn O (eds) Research on the cerebral circulation. Thomas, Springfield, pp 287–290

    Google Scholar 

  45. O'Brien MD, Mallett BL (1970) Cerebral cortex perfusion rates in dementia. J Neurol Neurosurg Psychiatry 33:497–500

    Google Scholar 

  46. Obrist WD, Chivian E, Cronquist S, Ingvar DH (1970) Regional cerebral blood flow in senile and presenile dementia. Neurology 20:315–322

    Google Scholar 

  47. Perry EK, Perry RH, Tomlinson BE, Blessed G, Gibson PH (1980) Coenzyme-A acetylating enzymes in Alzheimer disease: possible cholinergic “compartment” of pyruvate dehydrogenase. Neurosci Lett 18:105–110

    Google Scholar 

  48. Rogers RL, Meyer JS, Mortel KF, Mahurin RK, Judd BW (1986) Decreased cerebral blood flow precedes multi-infarct dementia, but follows senile dementia of Alzheimer type. Neurology 36:1–6

    Google Scholar 

  49. Rossor MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M (1984) Neurochemical characteristics of early and late onset types of Alzheimer's disease. Br Med J 288:961–964

    Google Scholar 

  50. Roth M (1986) The association of clinical and neurological findings and its bearing on the classification and aetiology of Alzheimer's disease. Br Med Bull 42:42–50

    Google Scholar 

  51. Sacks W (1965) Cerebral metabolism of doubly labeled glucose in humans in vivo. J Appl Physiol 20:117–130

    Google Scholar 

  52. Schneider K (1958) Klinische Psychopathologie, 5th edn. Thieme, Stuttgart, p 63

    Google Scholar 

  53. Sims NR, Bowen DM, Smith CCT, Flack RHA, Davison AN, Snowdon JS, Neary D (1980) Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer's disease. Lancet I:333–336

    Google Scholar 

  54. Sims NR, Bowen DM, Davison AN (1981) (14C) Acetylcholine synthesis and (14C) carbon dioxide production from (U-14C) glucose by tissue prisms from human neocortex. Biochem J 196:867–876

    Google Scholar 

  55. Sims NR, Bowen DM, Allen SJ, Smith CCT, Neary D, Thomas DJ, Davison AN (1983) Presynaptic cholinergic dysfunction in patients with dementia. J Neurochem 40:503–509

    Google Scholar 

  56. Sims NR, Bowen DM, Neary D, Davison AN (1983) Metabolic processes in Alzheimer's disease: adenine nucleotide content and production of 14CO2 from (U-14C) glucose in vitro in human neocortex. J Neurochem 41:1329–1334

    Google Scholar 

  57. Sims NR, Finegan JM, Blass JP (1985) Altered glucose metabolism in fibroblasts from patients with Alzheimer disease. N Engl J Med 313:638–639

    Google Scholar 

  58. Smith CB, Goochee C, Rapoport SI, Sokoloff L (1980) Effects of ageing on local rates of cerebral glucose utilization in the rat. Brain 103:351–356

    Google Scholar 

  59. Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78

    Google Scholar 

  60. Sumpter PQ, Mann DMA, Davies CA, Yates PO, Snowdon JS, Neary D (1986) An ultrastructural analysis of the effects of accumulation of neurofibrillary tangle in pyramidal neurons of the cerebral cortex in Alzheimer's disease. Neuropathol Appl Neurobiol 12:305–319

    Google Scholar 

  61. Tachibana H, Meyer JS, Kitagawa Y, Rogers RL, Okayasu H, Mortel KF (1984) Effects of aging on cerebral blood flow in dementia. J Am Geriatr Soc 32:114–120

    Google Scholar 

  62. Wagner O, Oesterreich K, Hoyer S (1985) Validity of the ischemic score in degenerative and vascular dementia and depression in old age. Arch Gerontol Geriatr 4:333–345

    Google Scholar 

  63. Weinhardt F, Quadbeck G, Hoyer S (1972) Quantitative Bestimmung von Blutgasvolumina mit Hilfe der Gaschromatographie. Z Prakt Anaesth 6:337–347

    Google Scholar 

  64. Wong KL, Tyce GM (1983) Glucose and amino acid metabolism in rat brain during sustained hypoglycemia. Neurochem Res 8:401–415

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyer, S., Oesterreich, K. & Wagner, O. Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type?. J Neurol 235, 143–148 (1988). https://doi.org/10.1007/BF00314304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00314304

Key words

Navigation