Skip to main content
Log in

Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer's disease cases

  • Regular Papers
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Head trauma has been associated with the occurrence of Alzhiemer's disease and plays a clear role in the etiopathogenesis of the boxers encephalopathy referred to as dementia pugilistica. Neurofibrillary tangles (NFT), one of the pathological hallmarks of Alzheimer's disease are observed in very high densities in the brains of former professional boxers suffering from dementia pugilistica. In Alzheimer's disease, NFT display striking regional and laminar distribution patterns that have been correlated with the localization of neurons forming specific corticocortical connections. In dementia pugilistica cases, NFT were concentrated in the superficial layers in the neocortex, whereas in Alzheimer's disease they predominated in the deep layers. Thus, the association cortex of brains from dementia pugilistica patients demonstrated an inverse NFT distribution as compared to Alzheimer's disease. This finding suggests that a more circumscribed population of cortical pyramidal neurons might be affected in dementia pugilistica than in Alzheimer's disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams CWM, Bruton CJ (1989) The cerebral vasculature in dementia pugilistica. J Neurol Neurosurg Psychiatry 52:600–604

    Google Scholar 

  2. Allsop D, Haga S, Bruton C, Ishii T, Roberts GW (1990) Neurofibrillary tangles in some cases of dementia pugilistica share antigens which amyloid β-protein of Alzheimer's disease. Am J Pathol 136:255–260

    Google Scholar 

  3. Borenstein Graves A, White E, Koepsell TD, Reifler BV, Van Belle G, Larson EB, Raskind M (1990) The association between head trauma and Alzheimer's disease. Am J Epidemiol 131:491–501

    Google Scholar 

  4. Bouras C, Hof PR, Guntern R, Morrison JH (1990) Down's syndrome (DS), dementia pugilistica (DP), and Alzheimer's disease (AD): a quantitative neuropathologic comparison. Proc Soc Neurosci 16:1264

    Google Scholar 

  5. Brandenburg W, Hallervorden J (1954) Dementia pugilistica mit anatomischem Befund. Virchows Arch Pathol Anat Physiol Klin Med 325:680–709

    Google Scholar 

  6. Casson IR, Siegel O, Sham R, Campbell EA, Tarlau M, DiDomenico A (1984) Brain damage in modern boxers. J Am Med Assoc 251:2663–2667

    Google Scholar 

  7. Claude H, Cuel J (1939) Démence pré-sénile post-traumatique après fracture du crâne: considérations médico-légales. Ann Med Leg Criminol Police Sci Med Soc Toxicol 19:173–184

    Google Scholar 

  8. Clinton J, Ambler MW, Roberts GW (1991) Post-traumatic Alzheimer's disease: preponderance of a single plaque type. Neuropathol Appl Neurobiol 17:69–74

    Google Scholar 

  9. Constantinidis J, Tissot R (1967) Lésions neurofibrillaires d'Alzheimer généralisées sans plaques séniles. Schweiz Arch Neurol Neurochir Psychiatr 100:117–130

    Google Scholar 

  10. Corsellis JAN (1978) Posttraumatic dementia. Aging (NY) 7:125–133

    Google Scholar 

  11. Corsellis JAN, Brierley JB (1959) Observations on the pathology of insidious dementia following head injury. J Ment Sci 105:714–720

    Google Scholar 

  12. Corsellis JAN, Bruton CJ, Breeman-Browne D (1973) The aftermath of boxing. Psychol Med 3:270–303

    Google Scholar 

  13. Dale GE, Leigh PN, Luthert P, Anderton BH, Roberts GW (1991) Neurofibrillary tangles in dementia pugilistica are ubiquitinated. J Neurol Neurosurg Psychiatry 54:116–118

    Google Scholar 

  14. Défossez A, Beauvillain JC, Delacourte A, Mazzuca M (1988) Alzheimer's disease: a new evidence for common epitopes between microtubule associated protein tau and paired helical filaments (PHF): demonstration at the elctron microscope by a double immunogold labelling. Virchows Arch [A] 413:141–145

    Google Scholar 

  15. Delacourte A, Flament S, Dibe EM, Hublau P, Sablonnière B, Hémon B, Scherrer V, Défossez A (1990) Pathological proteins tau 64 and 69 are specifically expressed in the somatodendritic domain of the degenerating cortical neurons during Alzheimer's disease: demonstration with a panel of antibodies against tau proteins. Acta Neuropathol 80:111–117

    Google Scholar 

  16. Flament S, Delacourte A, Delaère P, Duyckaerts C, Hauw JJ (1990) Correlation between microscopical changes and tau 64 and 69 biochemical detection in senile dementia of the Alzheimer type. Tau 64 and 69 are reliable markers of the neurofibrillary degeneration. Acta Neuropathol 80:212–215

    Google Scholar 

  17. Flament S, Delacourte A, Verny M, Hauw JJ, Javoy-Agid F (1991) Abnormal tau proteins in progressive supranuclear palsy-Similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol 81:591–596

    Google Scholar 

  18. French LR, Schuman LM, Mortimer JA, Hutton JT, Boatman RA, Christians B (1985) A case-control study of dementia of the Alzheimer type. Am J Epidemiol 121:414–421

    Google Scholar 

  19. Gallays F (1971) Silver staining of Alzheimer's neurofibrillary changes by mean of physical development. Acta Morphol Acad Sci Hung 19:1–8

    Google Scholar 

  20. Garruto RM, Yase Y (1986) Neurodegenerative disorders of the Western Pacific: the search for mechanisms of pathogenesis. Trends Neurosci 9:368–371

    Google Scholar 

  21. Globus JH (1927) The Cajal and Hortega glia staining methods. A new step in the preparation of formaldehyde-fixed material. Arch Neurol Psychiatry 18:263–271

    Google Scholar 

  22. Grahmann H, Ule G (1957) Beitrag zur Kenntnis der chronischen cerebralen Krankheitsbilder bei Boxern (Dementia pugilistica and traumatische Boxer-Encephalopathie). Psychiatr Neurol 134:261–283

    Google Scholar 

  23. Guntern R, Bouras C, Hof PR, Vallet PG (1992) An improved thioflavine S method for neurofibrillary tangles and senile plaques in Alzheimer's disease. Experientia 48:8–10

    Google Scholar 

  24. Guterman A, Smith RW (1987) Neurological sequelae of boxing. Sports Med 4:194–210

    Google Scholar 

  25. Heyman A, Wilkinson WE, Stafford JA, Helms MJ, Sigmon AH, Weinberg T (1984) Alzheimer's disease: a study of epidemiological aspects. Ann Neurol 15:335–341

    Google Scholar 

  26. Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease. II. Primary and secondary visual cortex. J Comp Neurol 301:55–64

    Google Scholar 

  27. Hof PR, Bouras C, Constantinidis J, Morrison JH (1990) Selective disconnection of specific visual association pathways in cases of Alzheimer's disease presenting with Balint's syndrome. J Neuropathol Exp Neurol 49:168–184

    Google Scholar 

  28. Hof PR, Cox K, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease. I. Superior frontal and inferior temporal cortex. J Comp Neurol 301:44–54

    Google Scholar 

  29. Hof PR, Knabe R, Bovier P, Bouras C (1991) Neuropathological observations in a case of autism presenting with self injury behavior. Acta Neuropathol 82:321–326

    Google Scholar 

  30. Hof PR, Perl DP, Loerzel AJ, Morrison JH (1991) Neurofibrillary tangle distribution in the cerbral cortex of parkinsonism-dementia cases from Guam: differences with Alzheimer's disease. Brain Res 564:306–313

    Google Scholar 

  31. Hof PR, Delacourte A, Bouras C (1992) Distribution of cortical neurofibrillary tangles in progressive supranuclear palsy: a quantitative analysis of six cases. Acta Neuropathol 84:45–51

    Google Scholar 

  32. Hof PR, Charpiot A, Delacourte A, Buée L, Purohit D, Perl DP, Bouras C (1992) Distribution of neurofibrillary tangles and senile plaques in the cerebral cortex in postencephalitic parkinsonism. Neurosci Lett 139:10–14

    Google Scholar 

  33. Ito H, Hirano A, Yen SH, Kato S (1991) Demonstration of β amyloid-containing neurofibrillary tangles in parkinsonismdementia complex on Guam. Neuropathol Appl Neurobiol 17:365–373

    Google Scholar 

  34. Jones EG, Wise SP (1977) Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys. J Comp Neurol 175:391–438

    Google Scholar 

  35. Jordan BD (1987) Neurologic aspects of boxing. Arch Neurol 44:453–459

    Google Scholar 

  36. Kim KS, Miller DL, Sapienza VG, Chen CJ, Vai C, Grundke-Iqbal I, Curry JR, Wisniewski HM (1988) Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci Res Commun 2:121–130

    Google Scholar 

  37. Lampert PW, Hardman JM (1984) Morphological changes in the brains of boxers. J Am Med Assoc 251:2676–2679

    Google Scholar 

  38. Leininger BE, Gramling SE, Farrell AD, Kreutzer JS, Peck III EA (1990) Neuropsychological deficits in symptomatic minor head injury after concussion and mild concussion. J Neurol Neurosurg Psychiatry 53:293–296

    Google Scholar 

  39. Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distribution of neurofibrillary tangles and neuritic plaques in Alzheimer's disease: a quantitative study of visual and auditory cortices. J Neurosci 7:1799–1808

    Google Scholar 

  40. Martland HS (1928) Punch drunk. J Am Med Assoc 91:1103–1107

    Google Scholar 

  41. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4:2757–2763

    Google Scholar 

  42. Millspaugh JA (1937) Dementia pugilistica. US Navy Med Bull 35:297–303

    Google Scholar 

  43. Molgaard CA, Stanford EP, Morton DJ, Ryden LA, Schubert KR, Golbeck AL (1990) Epidemiology of head trauma and neurocognitive impairment in a multi-ethnic population. Neuroepidemiology 9:233–242

    Google Scholar 

  44. Morrison JH, Hof PR, Campbell MJ, De Lima AD, Voigt T, Bouras C, Cox K, Young WG (1990) Cellular pathology in Alzheimer's disease: implications of corticocortical disconnection and differential vulnerability. In: Rapoport SR, Petit H, Leys D, Christen Y (eds) Imaging, cerebral topography and Alzheimer's disease. Springer, Berlin Heidelberg New York Tokyo, pp 19–40

    Google Scholar 

  45. Mortimer JA, French LR, Hutton JT, Schuman LM (1985) Head injury as a risk factor for Alzheimer's disease. Neurology 35:264–267

    Google Scholar 

  46. Mortimer JA, Van Duijn CM, Chandra V, Fratiglioni L, Graves AB, Heyman A, Jorm AF, Kokmen E, Kondo K, Rocca WA, Shalat SL, Soininen H, Hofman A (1991) Head trauma as a risk factor of Alzheimer's disease: a collaborative re-analysis of case-control studies. Int J Epidemiol 20 [Suppl 2]: S28-S35

    Google Scholar 

  47. Mutrux S (1947) Diagnostic différentiel histologique de la maladie d'Alzheimer et de la démence sénile-Pathophobie de la zone de projection corticale. Monatsschr Psychiatr Neurol 113:100–107

    Google Scholar 

  48. Payne EE (1968) Brains of boxers. Neurochirurgia 11:173–188

    Google Scholar 

  49. Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer's disease. Proc Natl Acad Sci USA 82:4531–4534

    Google Scholar 

  50. Quandt J, Sommer H (1965) Beitrag zur Pathogenese der Encephalopathia pugilistica. Psychiat Neurol Med Psychol 17:448–451

    Google Scholar 

  51. Roberts AH (1969) Brain damage in boxers — A study of the prevalence of traumatic encephalopathy among ex-professional boxers. Pitman, London

    Google Scholar 

  52. Roberts GW (1988) Immunocytochemistry of neurofibrillary tangles in dementia pugilistica and Alzheimer's disease: evidence for common genesis. Lancet II:1456–1458

    Google Scholar 

  53. Roberts GW, Allsop D, Bruton C (1990) The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 53:373–378

    Google Scholar 

  54. Roberts GW, Whiwell HL, Acland PL, Bruton CJ (1990) Dementia in a punch-drunk wife. Lancet 335:918–919

    Google Scholar 

  55. Roberts GW, Gentleman SM, Lynch A, Graham DI (1991) βA4 amyloid protein deposition in brain after head trauma. Lancet 338:1422–1423

    Google Scholar 

  56. Rogers J, Morrison JH (1985) Quantitative morphology and regional and laminar distribution of senile plaques in Alzheimer's disease. J Neurosci 5:2801–2808

    Google Scholar 

  57. Rudelli R, Strom JO, Welch PT, Ambler MW (1982) Posttraumatic premature Alzheimer's disease-Neuropathologic findings and pathogenetic considerations. Arch Neurol 39:570–575

    Google Scholar 

  58. Spillane JD (1962) Five boxers. Br Med J 2:1205–1210

    Google Scholar 

  59. Tokuda T, Ikeda S, Yanagisawa N, Ihara Y, Glenner GG (1991) Re-examination of ex-boxers' brains using immunohistochemistry with antibodies to amyloid β-protein and tau protein. Acta Neuropathol 82:280–285

    Google Scholar 

  60. Unterharnscheidt F, Sellier K (1971) Vom Boxen: Mechanik, Pathomorphologie und Klinik der traumatischen Schäden des ZNS bei Boxern. Fortschr Neurol Psychiatr 39:109–151

    Google Scholar 

  61. Vallet PG, Guntern R, Hof PR, Golaz J, Delacourte A, Robakis NK, Bouras C (1992) A comparative study of histological and immunohistochemical methods for neurofibrillary tangles and senile plaques in Alzheimer's disease. Acta Neuropathol 83:170–178

    Google Scholar 

  62. Van Essen DC (1985) Functional organization of the primate visual cortex. In: Peters A, Jones EG (eds) Cerebral Cortex, vol 3. Plenum, New York, pp 259–329

    Google Scholar 

  63. Yamaguchi H, Ishiguro K, Shoji M, Yamazaki T, Nakazato Y, Ihara Y, Hirai S (1990) Amyloid β/A4 protein precursor is bound to neurofibrillary tangles in Alzheimer-type dementia. Brain Res 537:318–322

    Google Scholar 

  64. Yamaguchi H, Nakazato Y, Shoji M, Okamoto K, Ihara Y, Morimatsu M, Hirai S (1991) Secondary deposition of beta amyloid within extracellular neurofibrillary tangles in Alzheimer-type dementia. Am J Pathol 138:699–705

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Brookdale Foundation, the American Health Assistance Foundation, and NIH grants AG06647 and AG05138

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hof, P.R., Bouras, C., Buée, L. et al. Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer's disease cases. Acta Neuropathol 85, 23–30 (1992). https://doi.org/10.1007/BF00304630

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00304630

Key words

Navigation