Skip to main content

Physiological and Molecular Aspects of Cobalamin Transport

  • Chapter
  • First Online:
Book cover Water Soluble Vitamins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 56))

Abstract

Minute doses of a complex cofactor cobalamin (Cbl, vitamin B12) are essential for metabolism. The nutritional chain for humans includes: (1) production of Cbl by bacteria in the intestinal tract of herbivores; (2) accumulation of the absorbed Cbl in animal tissues; (3) consumption of food of animal origin. Most biological sources contain both Cbl and its analogues, i.e. Cbl-resembling compounds physiologically inactive in animal cells. Selective assimilation of the true vitamin requires an interplay between three transporting proteins – haptocorrin (HC), intrinsic factor (IF), transcobalamin (TC) – and several receptors. HC is present in many biological fluids, including gastric juice, where it assists in disposal of analogues. Gastric IF selectively binds dietary Cbl and enters the intestinal cells via receptor-mediated endocytosis. Absorbed Cbl is transmitted to TC and delivered to the tissues with blood flow. The complex transport system guarantees a very efficient uptake of the vitamin, but failure at any link causes Cbl-deficiency. Early detection of a negative B12 balance is highly desirable to prevent irreversible neurological damages, anaemia and death in aggravated cases. The review focuses on the molecular mechanisms of cobalamin transport with emphasis on interaction of corrinoids with the specific proteins and protein-receptor recognition. The last section briefly describes practical aspects of recent basic research concerning early detection of B12-related disorders, medical application of Cbl-conjugates, and purification of corrinoids from biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi S, Miyamoto E, Watanabe F, Enomoto T., Kuda T, Hayashi M, Nakano Y, (2005) Purification and characterization of a corrinoid compound from a Japanese salted and fermented salmon kidney “Mefun”. J Liquid Chromatogr Related Technol 28:2561–2569

    Article  CAS  Google Scholar 

  • Allen RH (1975) Human vitamin B12 transport proteins. Prog Hematol 9:57–84

    PubMed  CAS  Google Scholar 

  • Allen RH, Seetharam B, Allen NC, Podell ER, Alpers DH (1978b) Correction of cobalamin malabsorption in pancreatic insufficiency with a cobalamin analogue that binds with high affinity to R protein but not to intrinsic factor. In vivo evidence that a failure to partially degrade R protein is responsible for cobalamin malabsorption in pancreatic insufficiency. J Clin Invest 61:1628–1634

    Article  PubMed  CAS  Google Scholar 

  • Allen RH, Seetharam B, Podell E, Alpers DH (1978a) Effect of proteolytic enzymes on the binding of cobalamin to R protein and intrinsic factor. In vitro evidence that a failure to partially degrade R protein is responsible for cobalamin malabsorption in pancreatic insufficiency. J Clin Invest 61:47–54

    Article  PubMed  CAS  Google Scholar 

  • Alsenz J, Russell-Jones GJ, Westwood S, Levet-Trafit B, de Smidt PC (2000) Oral absorption of peptides through the cobalamin (vitamin B12) pathway in the rat intestine. Pharm Res 17:825–832

    Article  PubMed  CAS  Google Scholar 

  • Bagnato JD, Eilers AL, Horton RA, Grissom CB (2004) Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin. J Org Chem 69:8987–8996

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209–247

    Article  PubMed  CAS  Google Scholar 

  • Barchielli R, Boretti G, Di Marco A, Julita P, Migliacci A, Minghetti A, Spalla C (1960) Isolation and structure of a new factor of the vitamin B12 group: guanosine diphosphate factor B. Biochem J 74:382–387

    PubMed  CAS  Google Scholar 

  • Birn H (2006) The kidney in vitamin B12 and folate homeostasis: characterization of receptors for tubular uptake of vitamins and carrier proteins. Am J Physiol Renal Physiol 291:F22–F36

    Article  PubMed  CAS  Google Scholar 

  • Birn H, Verroust PJ, Nexø E, Hager H, Jacobsen C, Christensen EI, Moestrup SK (1997) Characterization of an epithelial approximately 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and binds receptor-associated protein. J Biol Chem 272:26497–26504

    Article  PubMed  CAS  Google Scholar 

  • Boisson F, Fremont S, Migeon C, Nodari F, Droesch S, Gerard P, Parache RM, Nicolas JP (1999) Human haptocorrin in hepatocellular carcinoma. Cancer Detect Prev 23:89–96

    Article  PubMed  CAS  Google Scholar 

  • Bor MV, Nexø E, Hvas AM (2004) Holo-transcobalamin concentration and transcobalamin saturation reflect recent vitamin B12 absorption better than does serum vitamin B12. Clin Chem 50:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Brada N, Gordon MM, Wen J, Alpers DH (2001) Transfer of cobalamin from intrinsic factor to transcobalamin II. J Nutr Biochem 12:200–206

    Article  PubMed  CAS  Google Scholar 

  • Carkeet C, Dueker SR, Lango J, Buchholz BA, Miller JW, Green R, Hammock BD, Roth JR, Anderson PJ (2006) Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically labeled (14)C-cobalamin. Proc Natl Acad Sci USA 103:5694–5699

    Article  PubMed  CAS  Google Scholar 

  • Carmel R, Green R, Rosenblatt S, Watkins D (2003) Update on cobalamin, folate, and homocysteine. Hematology, Am Soc Hematol Educ Program 62–81

    Google Scholar 

  • Collins DA, Hogenkamp HP, O’Connor MK, Naylor S, Benson LM, Hardyman TJ, Thorson LM (2000) Biodistribution of radiolabeled adenosylcobalamin in patients diagnosed with various malignancies. Mayo Clin Proc 75:568–580

    Article  PubMed  CAS  Google Scholar 

  • Del Corral A, Carmel R (1990) Transfer of cobalamin from the cobalamin-binding protein of egg yolk to R binder of human saliva and gastric juice. Gastroenterology 98:1460–1466

    PubMed  CAS  Google Scholar 

  • Djalali M, Gueant JL, Lambert D, el Kholty S, Saunier M, Nicolas JP (1990) High-performance liquid chromatographic separation and dual competitive binding assay of corrinoids in biological material. J Chromatogr 529:81–91

    Article  PubMed  CAS  Google Scholar 

  • Fedosov SN, Berglund L, Nexø E, Petersen TE (1999) Sequence, S-S bridges, and spectra of bovine transcobalamin expressed in Pichia pastoris. J Biol Chem 274:26015–26020

    Article  PubMed  CAS  Google Scholar 

  • Fedosov SN, Berglund L, Fedosova NU, Nexø E, Petersen TE (2002) Comparative analysis of cobalamin binding kinetics and ligand protection for intrinsic factor, transcobalamin and haptocorrin. J Biol Chem 274:26015–26020

    Article  Google Scholar 

  • Fedosov SN, Berglund L, Nexø E, Petersen TE (2007a) Tetrazole derivatives and matrices as novel cobalamin coordinating compounds. J Organometallic Chem 692:1234–1242

    Google Scholar 

  • Fedosov SN, Fedosova NU, Berglund L, Moestrup SK, Nexø E, Petersen TE (2004) Assembly of the intrinsic factor domains and oligomerization of the protein in the presence of cobalamin. Biochemistry 43:15095–15102

    Article  PubMed  CAS  Google Scholar 

  • Fedosov SN, Fedosova NU, Berglund L, Moestrup SK, Nexø E, Petersen TE (2005a) Composite organization of the cobalamin binding and cubilin recognition sites of intrinsic factor. Biochemistry 44:3604–3614

    Article  PubMed  CAS  Google Scholar 

  • Fedosov, SN., Fedosova NU, Kräutler B, Moestrup SK, Nexø E, Petersen TE (2007b) Mechanisms of discrimination between cobalamins and their natural analogues during their binding to the specific B12-transporting proteins. Biochemistry 46:6446–6458

    Google Scholar 

  • Fedosov SN, Fedosova NU, Nexø E, Petersen TE (2000) Conformational changes of transcobalamin induced by aquocobalamin binding. Mechanism of substitution of the cobalt-coordinated group in the bound ligand. J Biol Chem 275:11791–11798

    Article  PubMed  CAS  Google Scholar 

  • Fedosov SN, Grissom CB, Fedosova NU, Moestrup SK, Nexø E, Petersen TE (2006) Application of a fluorescent Cbl-analogue for analysis of the binding kinetics. A study employing recombinant human transcobalamin and intrinsic factor. FEBS J 273:4742–4753

    Article  PubMed  CAS  Google Scholar 

  • Fedosov SN, Laursen NB, Nexø E, Moestrup SK, Petersen TE, Jensen EØ, Berglund L (2003) Human intrinsic factor expressed in the plant Arabidopsis thaliana. Eur J Biochem 270:3362–3367

    Article  PubMed  CAS  Google Scholar 

  • Fedosov SN, Örning L, Løvli T, Quadros EV, Thompson K, Berglund L, Petersen TE (2005b) Mapping the functional domains of human transcobalamin using monoclonal antibodies. FEBS J. 272:3887–3898

    Article  PubMed  CAS  Google Scholar 

  • Fedosov SN, Petersen TE, Nexø E (1996) Transcobalamin from cow milk: isolation and physico-chemical properties. Biochim Biophys Acta 1292:113–119

    Article  PubMed  Google Scholar 

  • Fyfe JC, Madsen M, Hojrup P, Christensen EI, Tanner SM, de la Chapelle A, He Q, Moestrup SK (2004) The functional cobalamin (vitamin B12)-intrinsic factor receptor is a novel complex of cubilin and amnionless. Blood 103:1573–1579

    Article  PubMed  CAS  Google Scholar 

  • Garau G, Fedosov SN, Petersen TE, Geremia S, Randaccio L (2001) Crystallization and preliminary X-ray diffraction analysis of human transcobalamin, a vitamin B12-transporting protein. Acta Cryst D57:1890–1892

    CAS  Google Scholar 

  • Gordon MM, Hu C, Chokshi H, Hewitt JE, Alpers DH (1991) Glycosylation is not required for ligand or receptor binding by expressed rat intrinsic factor. Am J Physiol 260: G736–G742

    PubMed  CAS  Google Scholar 

  • Goringe A, Ellis R, McDowell I, Vidal-Alaball J, Jenkins C, Butler C, Worwood M (2006) The limited value of methylmalonic acid, homocysteine and holotranscobalamin in the diagnosis of early B12 deficiency. Haematologica 91:231–234

    PubMed  CAS  Google Scholar 

  • Gueant JL, Djalali M, Aouadj R, Gaucher P, Monin B, Nicolas JP (1986) In vitro and in vivo evidences that the malabsorption of cobalamin is related to its binding on haptocorrin (R-binder) in chronic pancreatitis. Am J Clin Nutr 44:265–277

    PubMed  CAS  Google Scholar 

  • Gueant JL, Vidailhet M, Pasquet C, Djalali M, Nicolas JP (1984) Effect of pancreatic extracts on the faecal excretion and on the serum concentration of cobalamin and cobalamin analogues in cystic fibrosis. Clin Chim Acta 137:33–41

    Article  PubMed  CAS  Google Scholar 

  • Herbert V, Fong W, Gulle V, Stopler T (1990) Low holotranscobalamin II is the earliest serum marker for subnormal vitamin B12 (cobalamin) absorption in patients with AIDS. Am J Hematol 34:132–139

    Article  PubMed  CAS  Google Scholar 

  • Hewitt JE, Gordon MM, Taggart RT, Mohandas TK, Alpers DH (1991) Human gastric intrinsic factor: characterization of cDNA and genomic clones and localization to human chromosome 11. Genomics 10:432–440

    Article  PubMed  CAS  Google Scholar 

  • Hin H, Clarke R, Sherliker P, Atoyebi W, Emmens K, Birks J, Schneede J, Ueland PM, Nexø E, Scott J, Molloy A, Donaghy M, Frost C, Evans JG (2006) Clinical relevance of low serum vitamin B12 concentrations in older people: the Banbury B12 study. Age Ageing 35:416–422

    Article  PubMed  Google Scholar 

  • Hogenkamp HP, Collins DA, Live D, Benson LM, Naylor S (2000) Synthesis and characterization of nido-carborane-cobalamin conjugates. Nucl Med Biol 27:89–92

    Article  PubMed  CAS  Google Scholar 

  • Hom BL, Olesen HA (1969) Plasma clearance of 57cobalt-labelled vitamin B12 bound in vitro and in vivo to transcobalamin I and II. Scand J Clin Lab Invest 23:201–211

    Article  PubMed  CAS  Google Scholar 

  • Horton RA, Bagnato JD, Grissom CB (2003) Structural determination of 5′-OH α-ribofuranoside modified cobalamins via 13C and DEPT NMR. J Org Chem 68:7108–7111

    Article  PubMed  CAS  Google Scholar 

  • Hvas AM, Mørkbak AL, Nexø E (2006) Plasma holotranscobalamin compared with plasma cobalamins for assessment of vitamin B(12) absorption; optimisation of a non-radioactive vitamin B(12) absorption test (CobaSorb). Clin Chim Acta 376:150–154

    Google Scholar 

  • Hvas AM, Nexø E (2005) Holotranscobalamin – a first choice assay for diagnosing early vitamin B deficiency? J Intern Med 257:289–298

    Article  PubMed  CAS  Google Scholar 

  • Kalra S, Li N, Seetharam S, Alpers DH, Seetharam B (2003) Function and stability of human transcobalamin II: role of intramolecular disulfide bonds C98-C291 and C147-C187. Am J Physiol Cell Physiol 285:C150–C160

    PubMed  CAS  Google Scholar 

  • Kanazawa S, Herbert V (1983) Noncobalamin vitamin B12 analogues in human red cells, liver, and brain. Am J Clin Nutr 37:774–777

    PubMed  CAS  Google Scholar 

  • Kittang E, Schjonsby H (1987) Effect of gastric anacidity on the release of cobalamins from food and their subsequent binding to R-protein. Scand J Gastroenterol 9:1031–1037

    Article  Google Scholar 

  • Kondo H, Kolhouse JF, Allen RH (1980) Presence of cobalamin analogues in animal tissues. Proc Natl Acad Sci USA 77:817–821

    Article  PubMed  CAS  Google Scholar 

  • Kräutler B, Ostermann S (2003) Structure, reactions, and functions of B12 and B12-proteins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 11. Elsevier Science, New York, USA, pp. 229–276

    Google Scholar 

  • Kristiansen M, Kozyraki R, Jacobsen C, Nexø E, Verroust PJ, Moestrup SK (1999) Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding. J Biol Chem 274:20540–20544

    Article  PubMed  CAS  Google Scholar 

  • Lamm L, Horig JA, Renz P, Heckmann G (1980) Biosynthesis of vitamin B12. Experiments with the anaerobe Eubacterium limosum and some labelled substrates. Eur J Biochem 109:115–118

    Article  PubMed  CAS  Google Scholar 

  • Li N, Seetharam S, Rosenblatt DS, Seetharam B (1994) Expression of transcobalamin II mRNA in human tissues and cultured fibroblasts from normal and transcobalamin II-deficient patients. Biochem J 301:585–590

    PubMed  CAS  Google Scholar 

  • Linnell JC, Hoffbrand AV, Hussein HA, Wise IJ, Matthews DM (1974) Tissue distribution of coenzyme and other forms of vitamin B12 in control subjects and patients with pernicious anaemia. Clin Sci Mol Med 46:163–172

    PubMed  CAS  Google Scholar 

  • Martens J-H, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–85

    Article  PubMed  CAS  Google Scholar 

  • Mathews FS, Gordon MM, Chen Z, Rajashankar KR, Ealick SE, Alpers DH, Sukumar N (2007) Crystal structure of human intrinsic factor: cobalamin complex at 2.6-A resolution. Proc Natl Acad Sci USA 104:17311–17316

    Article  PubMed  CAS  Google Scholar 

  • McGreevy JM, Cannon MJ, Grissom CB (2003) Minimally invasive lymphatic mapping using fluorescently labeled vitamin B12. J Surg Res 111:38–44

    Article  PubMed  CAS  Google Scholar 

  • Mervyn L (1971) The metabolism of the cobalamins. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 21. Elsevier, London, England, pp. 153–177

    Google Scholar 

  • Miller JW, Garrod MG, Rockwood AL, Kushnir MM, Allen LH, Haan MN, Green R (2006) Measurement of total vitamin B12 and holotranscobalamin, singly and in combination, in screening for metabolic vitamin B12 deficiency. Clin Chem 52:278–285

    Article  PubMed  CAS  Google Scholar 

  • Moestrup SK (2006) New insights into carrier binding and epithelial uptake of the erythropoietic nutrients cobalamin and folate. Curr Opin Hematol 13:119–123

    Article  PubMed  CAS  Google Scholar 

  • Moestrup SK, Birn H, Fischer PB, Petersen CM, Verroust PJ, Sim RB, Christensen EI, Nexø E (1996) Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. Proc Natl Acad Sci USA 93:8612–8617

    Article  PubMed  CAS  Google Scholar 

  • Mørkbak AL, Hvas AM, Lloyd-Wright Z, Sanders TA, Bleie O, Refsum H, Nygaard OK, Nexø E (2006) Effect of vitamin B12 treatment on haptocorrin. Clin Chem 52:1104–1111

    Article  PubMed  Google Scholar 

  • Nexø E (1998) Cobalamin binding proteins. In: Kräutler B, Arigoni D, Golding BT (eds) Vitamin B12 and B12-proteins. Wiley-VCH, Weinheim, Germany, pp. 461–475

    Chapter  Google Scholar 

  • Nexø E, Christensen AL, Hvas AM, Petersen TE, Fedosov SN (2002) Quantification of holo-transcobalamin, a marker of vitamin B12 deficiency. Clin Chem 48:561–562

    PubMed  Google Scholar 

  • Nexø E, Hansen MR, Konradsen L (1988) Human salivary epidermal growth factor, haptocorrin and amylase before and after prolonged exercise. Scand J Clin Lab Invest 48:269–273

    Article  PubMed  Google Scholar 

  • Nexø E, Hollenberg MD (1980) Characterization of the particulate and soluble acceptor for transcobalamin II from human placenta and rabbit liver. Biochim Biophys Acta 628:190–200

    Article  PubMed  Google Scholar 

  • Örning L, Rian A, Campbell A, Brady J, Fedosov SN, Bramlage B, Thompson K, Quadros EV (2006) Characterization of a monoclonal antibody with specificity for holo-transcobalamin. Nutr Metab 3:3, PMID: 16393340

    Article  Google Scholar 

  • Ortigues-Marty I, Micol D, Prache S, Dozias D, Girard CL (2005) Nutritional value of meat: the influence of nutrition and physical activity on vitamin B12 concentrations in ruminant tissues. Reprod Nutr Dev 45:453–467

    Article  PubMed  CAS  Google Scholar 

  • Platica O, Janeczko R, Quadros EV, Regec A, Romain R, Rothenberg SP (1991) The cDNA sequence and the deduced amino acid sequence of human transcobalamin II show homology with rat intrinsic factor and human transcobalamin I. J Biol Chem 266:7860–7863

    PubMed  CAS  Google Scholar 

  • Pratt JM (1972) Inorganic chemistry of vitamin B12. Academic, London, New York

    Google Scholar 

  • Quadros EV, Matthews DM, Wise IJ, Linnell JC (1979) Tissue distribution of endogenous cobalamins and other corrins in the rat, cat and guinea pig. Biochim Biophys Acta 421:141–152

    Article  Google Scholar 

  • Quadros EV, Nakayama Y, Sequeira JM (2005) The binding properties of the human receptor for the cellular uptake of vitamin B12. Biochem Biophys Res Commun 327:1006–1010

    Article  PubMed  CAS  Google Scholar 

  • Quadros EV, Regec AL, Khan KM, Quadros E, Rothenberg SP (1999) Transcobalamin II synthesized in the intestinal villi facilitates transfer of cobalamin to the portal blood. Am J Physiol 277:G161–G166

    PubMed  CAS  Google Scholar 

  • Quadros EV, Sai P, Rothenberg SP (1993) Functional human transcobalamin II isoproteins are secreted by insect cells using the baculovirus expression system. Blood 81:1239–1245

    PubMed  CAS  Google Scholar 

  • Russell-Jones GJ (1998) Use of vitamin B12 conjugates to deliver protein drugs by the oral route. Crit Rev Ther Drug Carrier Syst 15:557–586

    PubMed  CAS  Google Scholar 

  • Seetharam B, Li N (2000) Transcobalamin II and its cell surface receptor. Vitam Horm 59:337–366

    Article  PubMed  CAS  Google Scholar 

  • Seligman PA, Allen RH (1978) Characterization of the receptor for transcobalamin II isolated from human placenta. J Biol Chem 253:1766–1772

    PubMed  CAS  Google Scholar 

  • Smeltzer CC, Cannon MJ, Pinson PR, Munger JD Jr, West FG, Grissom CB (2001) Synthesis and characterization of fluorescent cobalamin (CobalaFluor) derivatives for imaging. Org Lett 3:799–801

    Article  PubMed  CAS  Google Scholar 

  • Toohey JI (2006) Vitamin B12 and methionine synthesis: a critical review. Is nature’s most beautiful cofactor misunderstood? BioFactors 26:45–57

    CAS  Google Scholar 

  • Ulleland M, Eilertsen I, Quadros EV, Rothenberg SP, Fedosov SN, Sundrehagen E, Örning L (2002) Direct assay for cobalamin bound to transcobalamin (holo-transcobalamin) in serum. Clin Chem 48:526–532

    PubMed  CAS  Google Scholar 

  • Vogelmann H, Wagner F (1974) Isolation and chromatographic separation of vitamin B12 and other corrinoids from biological sources. Biotechnol Bioeng Symp 4:969–975

    Google Scholar 

  • Waibel R, Treichler H, Schaefer NG, van Staveren DR, Mundwiler S, Kunze S, Küenzi M, Alberto R, Nüesch J, Knuth A, Moch H, Schibli R, Schubiger PA (2008) New derivatives of vitamin B12 show preferential targeting of tumors. Cancer Res 68:2904–2911

    Article  PubMed  CAS  Google Scholar 

  • Wuerges J, Garau G, Geremia S, Fedosov SN, Petersen TE, Randaccio L (2006) Structural basis for mammalian vitamin B12 transport by transcobalamin. PNAS 103:4386–4391

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lundbeck foundation and Cobento A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Fedosov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fedosov, S.N. (2012). Physiological and Molecular Aspects of Cobalamin Transport. In: Stanger, O. (eds) Water Soluble Vitamins. Subcellular Biochemistry, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2199-9_18

Download citation

Publish with us

Policies and ethics