Skip to main content

Stereotaxic intrastriatal implantation of human retinal pigment epithelial (hRPE) cells attached to gelatin microcarriers: a potential new cell therapy for Parkinson’s disease

  • Conference paper

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 65))

Summary

Human retinal pigment epithelial (hRPE) cells are dopaminergic support cells in the neural retina. Stereotaxic intrastriatal implantation of hRPE cells attached to gelatin microcarriers (Spheramine®) in rodent and non-human primate models of Parkinson’s disease (PD) produces long term amelioration of motor and behavioral deficits, with histological and PET evidence of cell survival without immunosuppression. Long-term safety in cynomologous monkeys has also been demonstrated.

Six H&Y stage III/IV PD patients were enrolled in a one-year, open-label, single center study to evaluate the safety and efficacy of Spheramine (−325,000 cells) implanted in the most affected post-commissural putamen. All patients tolerated the implantation of Spheramine® well and demonstrated improvement. At 6, 9, and 12 months post-operatively, the mean UPDRS-Motor score “off”, the primary outcome measure, improved 33%, (n = 6), 42% (n = 6), and 48% (n = 3), respectively. No “off-state” dyskinesias have been observed. Based on these preliminary results, Spheramine® appears to show promise in treating late stage PD patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Borlongan CV, Saporta S, Sanberg PR (1998) Rat adrenal chromaffin cells seeded on microcarrier beads promote long-term functional recovery in hemiparkinsonian rats. Exp Neurol 151: 203–214

    Article  PubMed  CAS  Google Scholar 

  • Boulton M (1998) Melanin and the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium: function and disease. Oxford University Press, New York, pp 68–85

    Google Scholar 

  • Björklund A, Stenevi U (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 177: 555–560

    Article  PubMed  Google Scholar 

  • Burnside B, Bost-Usinger L (1998) The retinal pigment epithelial cytoskeleton. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium: function and disease. Oxford University Press, New York, pp 41–67

    Google Scholar 

  • Campochiaro PA (1998) Growth factors in the retinal pigment epithelium and retina. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium: function and disease. Oxford University Press, New York, pp 459–477

    Google Scholar 

  • Chang CJG, Cornfeldt ML, Schweikert AW, SanMartin A, Thompson RB, Hoskins DE, Jefferson ND, Hogan DB, Fulton R, Switzer RC, Allen RC (1999) Intracranial tolerability of Spheramine™ (gelatin microcarrier-bound human retinal pigment epithelial [hRPE] cells) and gelatin microcarriers in cynomologous monkey (Macaca facicularis). Abstracts Soc for Neurosci 1999, 29th Annual Meeting, 294.20

    Google Scholar 

  • Cherksey BD (1994) Microcarrier pre-adhesion enhances long term survival of adult cells implanted into the mammalian brain. Exp Neurol 129: S18

    Google Scholar 

  • Cherksey BD (1997) Method of increasing viability of cells which are administered to the brain or spinal cord. U.S. Patent 5,618,531

    Google Scholar 

  • Cherksey BD (1998) Method for transplanting cells into the brain and therapeutic uses therefor. U.S. Patent 5,750,103

    Google Scholar 

  • Cherksey BD (2000) Method for transplanting cells into the brain and therapeutic uses therefor. US Patent 6,060,048

    Google Scholar 

  • Cherksey BD, Sapirstein VS, Geraci AL (1996) Adrenal chromaffin cells on microcarriers exhibit enhanced long-term functional effects when implanted into the mammalian brain. Neurosci 75: 657–664

    Article  CAS  Google Scholar 

  • Clarkson ED (2001) Fetal tissue transplantation for patients with Parkinson’s disease. A database of published clinical results. Drugs & Aging 18: 773–785

    Article  CAS  Google Scholar 

  • Deacon T, Dinsmore L, Costantini LC, Ratliff J, Isacson O (1998) Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 149: 28–41

    Article  PubMed  CAS  Google Scholar 

  • Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345: 956–963

    Article  Google Scholar 

  • de la Fuente-Fernandes R, Lu J-Q, Sossi V, Jivan S, Schulzer M, Holden JE, Lee CS, Ruth TJ, Calne DB, Stoessl AJ (2001) Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol 49: 298–303

    Article  Google Scholar 

  • Doudet D, Honey C, Schweikert AW, Cornfeldt ML (2002) PET imaging of implanted human retinal pigment epithelial (hRPE) cells on gelatin microcarriers (Spheramine) in the MPTP-induced primate model of Parkinson’s disease. Abstracts Int Neural Transpl Repair Meeting, Denver, CO

    Google Scholar 

  • Dunnett SB, Björklund A (1999) Parkinson’s disease: prospects for novel restorative and neuroprotective treatments. Nature 399: S32–S39

    Article  Google Scholar 

  • Dunnett SB, Björklund A, Lindvall O (2001) Cell therapy in Parkinson’s disease — stop or go? Nature Rev Neurosci 2: 365–369

    Article  CAS  Google Scholar 

  • Englund U, Björklund A, Wictorin K, Lindvall O, Kokaia M (2002) Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci USA 99: 17089–17094

    Article  PubMed  CAS  Google Scholar 

  • Fahn S (2000) Double-blind controlled trial of embryonic dopaminergic tissue transplants in advanced Parkinson’s disease. Mov Disord 15[Suppl 3]: M114

    Google Scholar 

  • Food and Drug Administration (2002) FDA approves expanded use of brain implant for Parkinson’s disease. FDA Talk Paper, T02-03, January 14, 2002

    Google Scholar 

  • Freed CR, Greene PE, Breeze RE, Tsai W-Y, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344: 710–719

    Article  PubMed  CAS  Google Scholar 

  • Freeman TB, Widner H (1998) Cell transplantation for neurological disorders: towards reconstruction of the human central nervous system. Humana Press, Totowa, NJ

    Google Scholar 

  • Fricker-Gates RA, Dunnett SB (2002) Rewiring the Parkinsonian brain. Nature Med 8: 105–106

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen A, Wiencke AK, Ia Cour M, Kaestel CG, Madsen HO, Hamann S, Lui GM, Scherfig E, Prause JU, Svejgaard A, Odum N, Nissen MH, Ropke C (1998) Human retinal pigment epithelial cell-induced apoptosis in activated T cells. Invest Ophthalmol Vis Sci 39: 1590

    PubMed  CAS  Google Scholar 

  • Lang AE, Lozano AM, Montgomery E, Duff J, Hutchinson W (1997) Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med 337: 1036–1042

    Article  PubMed  CAS  Google Scholar 

  • Lang AE, Duff J, Saint-Cyr JA, Trepanier L, Gross RE, Lombardi W, Montomery E, Hutchinson W, Lozano AM (1999) Posteroventral medial pallidotomy in advanced Parkinson’s disease. J Neurol 246[Suppl 2]: II28–II41

    Article  PubMed  Google Scholar 

  • Laitinen LV (2000) Behavioral complications of early pallidotomy. Brain Cogn 42: 313–323

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Widner H, Goetz CG, Brooks D, Fahn S, Freeman T, Watts R (1992) Core assessment program for intracerebral transplantations (CAPIT). Mov Disord 7: 2–13

    Article  PubMed  CAS  Google Scholar 

  • Lamelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20: 423–452

    Google Scholar 

  • Marchionini DM, Subramanian T, Burnette B, Miller GW, Iuvone MP, Potter EM, Cornfeldt ML (1999) Dopaminergic properties of retinal pigmented epithelial cells attached to microcarriers (RPE-M) transplanted into Parkinsonian animals. Abstracts Am Soc Neural Transpl Repair 5: A–05

    Google Scholar 

  • Marmor MF, Wolfensberger TJ (1998) The retinal pigment epithelium: function and disease. Oxford University Press, New York

    Google Scholar 

  • Pawelek JM, Körner AM (1982) The biosynthesis of mammalian melanin. Am Sci 70:136

    PubMed  CAS  Google Scholar 

  • Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of the nigrostriatal dopamine system. Science 204: 643–647

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer B (1991) Improved methodology for fell culture of human and monkey retinal pigment epithelium. Prog Retina Res 10: 251–291

    Article  Google Scholar 

  • Potter BM, Kidwell W, Cornfeldt M (1997) Functional effects of intrastriatal hRPE grafts in hemiparkinsonian rats is enhanced by adhering to microcarriers. Abstracts Soc Neurosci 27th Annual Meeting: 778.10

    Google Scholar 

  • Saporta S, Borlongan C, Moore J, Mejia-Millan E, Jones SL, Bonness P, Randall TS, Allen RC, Freeman TB, Sanberg PR (1997) Microcarrier enhanced survival of human and rat fetal ventral mesencephalon cells implanted in the rat striatum. Cell Transpl 6: 579–584

    Article  CAS  Google Scholar 

  • Schraermeyer U, Heimann (1999) Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12: 219–236

    Article  PubMed  CAS  Google Scholar 

  • Subramanian T, Bakay RAE, Burnette B, Hubert GW, Cornfeldt M, Watts RL (1998) Effects of stereotactic intrastriatal transplantation of human retinal pigment epithelial (hRPE) cells attached to gelatin microcarriers on parkinsonian motor symptoms in hemiparkinsonian (HP) monkeys. Abstracts Am Soc Neural Transpl, 5th Annual Conference, 2–5

    Google Scholar 

  • Subramanian T, Burnette B, Bakay RAE, Hoffman JM, Votow V, Cornfeldt M, Watts RL (1998) Intrastriatal transplantation of human retinal pigment epithelial cells attached to gelatin microcarriers (hRPE-GM) improves parkinsonian motor signs in hemiparkinsonian (HP) monkeys. Abstracts 5th Int Cong Parkinson’s Disease and Movement Disorders, New York

    Google Scholar 

  • Subramanian T, Bakay RAE, Cornfeldt ME, Watts RL (1999) Blinded placebo-controlled trial to assess the effects of striatal transplantation of human retinal pigmented epithelial cells attached to microcarriers (hRPE-M) in parkinsonian monkeys. Parkinsonism and Related Disorders 5: S111

    Article  Google Scholar 

  • Subramanian T, Marchionini D, Potter EM, Cornfeldt ML (2002) Striatal xenotransplantation of human retinal pigment epithelial cells attached to microcarriers in hemiparkinsonian rats ameliorates behavioral deficits without provoking a host immune response. Cell Transpl 11: 207–214

    Google Scholar 

  • Tezel TH, Del Priore LV (1997) Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 235: 41–47

    Article  PubMed  CAS  Google Scholar 

  • Tombran-Tink J, Chader CG, Johnson LV (1991) PEDF: a pigment epithelial derived factor with potent neuronal differentiative activity. Exp Eye Res 53: 411–414

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res 24: 485–493

    Article  PubMed  CAS  Google Scholar 

  • Watts RL, Raiser CD, Stover NP, Cornfeldt ML, Schweikert AW, Subramanian T, Bakay RAE (2001) Stereotaxic intrastriatal implantation of retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease (PD) patients: a pilot study. Neurology 56[Suppl 3]: A283, P04.102

    Google Scholar 

  • Watts RL, Raiser CD, Stover NP, Cornfeldt ML, Schweikert AW, Allen RC, Subramanian T, Bakay RAE (2001) Stereotaxic intrastriatal implantation of retinal pigment epithelial cells attached to microcarriers in advanced Parkinson’s disease (PD) patients: A pilot study in six patients. Parkinsonism & Related Disorders 7[Suppl]: S87, P-TU-305

    Google Scholar 

  • Watts RL, Freeman TB, Hauser RA, Bakay RAE, Ellias SA, Stoessl AJ, Eidelberg D, Fink JS (2001) A double-blind, randomized, controlled, multicenter clinical trial of the safety and efficacy of stereotaxic intrastriatal implantation of fetal porcine ventral mesencephalic tissue (Neurocell-PD™) versus imitation surgery in patients with Parkinson’s disease (PD). Parkinsonism and Related Disorders 7[Suppl]: S87, P-TU-304

    Google Scholar 

  • Watts RL, Raiser CD, Stover NP, Cornfeldt ML, Schweikert AW, Subramanian T, Bakay RAE (2002) Stereotaxic intrastriatal implantation of retinal pigment epithelial cells attached to microcarriers in advanced Parkinson’s disease (PD) patients: a pilot study. Neurology 58[Suppl 3]: A241, S31.004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this paper

Cite this paper

Watts, R.L. et al. (2003). Stereotaxic intrastriatal implantation of human retinal pigment epithelial (hRPE) cells attached to gelatin microcarriers: a potential new cell therapy for Parkinson’s disease. In: Horowski, R., et al. Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 65. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0643-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0643-3_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83907-2

  • Online ISBN: 978-3-7091-0643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics