Skip to main content

Antibody-Based Vascular Tumor Targeting

  • Chapter
  • First Online:
Angiogenesis Inhibition

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 180))

Abstract

The inhibition of angiogenesis represents a major step toward a more selective and better-tolerated therapy of cancer. An alternative way to take advantage of a tumor’s absolute dependence on a functional neovasculature is illustrated by the strategy of “antibody-based vascular tumor targeting.” This technology aims at the selective delivery of bioactive molecules to the tumor site by their conjugation to a carrier antibody reactive with a tumor-associated vascular antigen. A number of high-affinity monoclonal antibodies are nowadays available which have demonstrated a remarkable ability to selectively localize to the tumor vasculature. Indeed, some of them have already progressed from preclinical animal experiments to clinical studies in patients with cancer, acting as vehicles for the site-specific pharmacodelivery of proinflammatory cytokines or radionuclides.

In this chapter, we present a selection of well-characterized markers of angiogenesis which have proven to be suitable targets for antibody-based vascular targeting approaches. Furthermore, different transcriptomic and proteomic methodologies for the discovery of novel vascular tumor markers are described. In the last two sections, we focus on the discussion of antibody-based vascular tumor targeting strategies for imaging and therapy applications in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, Weiner LM (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750–4755

    PubMed  CAS  Google Scholar 

  • Adams GP, Tai MS, McCartney JE, Marks JD, Stafford WF 3rd, Houston LL, Huston JS, Weiner LM (2006) Avidity-mediated enhancement of in vivo tumor targeting by single-chain Fv dimers. Clin Cancer Res 12:1599–1605

    Article  PubMed  CAS  Google Scholar 

  • Balza E, Castellani P, Zijlstra A, Neri D, Zardi L, Siri A (2001) Lack of specificity of endoglin expression for tumor blood vessels. Int J Cancer 94:579–585

    Article  PubMed  CAS  Google Scholar 

  • Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ (2005) Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 23:4591–4601

    Article  PubMed  CAS  Google Scholar 

  • Berndorff D, Borkowski S, Sieger S, Rother A, Friebe M, Viti F, Hilger CS, Cyr JE, Dinkelborg LM (2005) Radioimmunotherapy of solid tumors by targeting extra domain B fibronectin: identification of the best-suited radioimmunoconjugate. Clin Cancer Res 11:7053s–7063s

    Article  PubMed  CAS  Google Scholar 

  • Birchler MT, Milisavlijevic D, Pfaltz M, Neri D, Odermatt B, Schmid S, Stoeckli SJ (2003) Expression of the extra domain B of fibronectin, a marker of angiogenesis, in head and neck tumors. Laryngoscope 113:1231–1237

    Article  PubMed  CAS  Google Scholar 

  • Birchler MT, Thuerl C, Schmid D, Neri D, Waibel R, Schubiger A, Stoeckli SJ, Schmid S, Goerres GW (2007) Immunoscintigraphy of patients with head and neck carcinomas, with an anti-angiogenetic antibody fragment. Otolaryngol Head Neck Surg 136:543–548

    Article  PubMed  Google Scholar 

  • Borsi L, Carnemolla B, Nicolo G, Spina B, Tanara G, Zardi L (1992) Expression of different tenascin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer 52:688–692

    Article  PubMed  CAS  Google Scholar 

  • Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, Leprini A, Sepulveda J, Burrone O, Neri D, Zardi L (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102:75–85

    Article  PubMed  CAS  Google Scholar 

  • Borsi L, Balza E, Carnemolla B, Sassi F, Castellani P, Berndt A, Kosmehl H, Biro A, Siri A, Orecchia P, Grassi J, Neri D, Zardi L (2003) Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 102:4384–4392

    Article  PubMed  CAS  Google Scholar 

  • Brack SS, Silacci M, Birchler M, Neri D (2006) Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res 12:3200–3208

    Article  PubMed  CAS  Google Scholar 

  • Bredow S, Lewin M, Hofmann B, Marecos E, Weissleder R (2000) Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. Eur J Cancer 36:675–681

    Article  PubMed  CAS  Google Scholar 

  • Bremer C, Ntziachristos V, Weissleder R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13:231–243

    PubMed  Google Scholar 

  • Burrows FJ, Thorpe PE (1993) Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci USA 90:8996–9000

    Article  PubMed  CAS  Google Scholar 

  • Burrows FJ, Derbyshire EJ, Tazzari PL, Amlot P, Gazdar AF, King SW, Letarte M, Vitetta ES, Thorpe PE (1995) Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1:1623–1634

    PubMed  CAS  Google Scholar 

  • Cai W, Wu Y, Chen K, Cao Q, Tice DA, Chen X (2006) In vitro and in vivo characterization of 64cu-labeled abegrintm, a humanized monoclonal antibody against integrin {alpha}v{beta}3. Cancer Res 66:9673–9681

    Article  PubMed  CAS  Google Scholar 

  • Carnemolla B, Balza E, Siri A, Zardi L, Nicotra MR, Bigotti A, Natali PG (1989) A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 108:1139–1148

    Article  PubMed  CAS  Google Scholar 

  • Carnemolla B, Neri D, Castellani P, Leprini A, Neri G, Pini A, Winter G, Zardi L (1996) Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. Int J Cancer 68:397–405

    Article  PubMed  CAS  Google Scholar 

  • Carnemolla B, Borsi L, Balza E, Castellani P, Meazza R, Berndt A, Ferrini S, Kosmehl H, Neri D, Zardi L (2002) Enhancement of the antitumor properties of interleukin-2 by its targeted delivery to the tumor blood vessel extracellular matrix. Blood 99:1659–1665

    Article  PubMed  Google Scholar 

  • Castellani P, Viale G, Dorcaratto A, Nicolo G, Kaczmarek J, Querze G, Zardi L (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59:612–618

    Article  PubMed  CAS  Google Scholar 

  • Castronovo V, Waltregny D, Kischel P, Roesli C, Elia G, Rybak JN, Neri D (2006) A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol Cell Proteomics 5:2083–2091

    Article  PubMed  CAS  Google Scholar 

  • Chang SS, O’Keefe DS, Bacich DJ, Reuter VE, Heston WD, Gaudin PB (1999) Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res 5:2674–2681

    PubMed  CAS  Google Scholar 

  • Chari RV (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107

    Article  PubMed  CAS  Google Scholar 

  • Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163:871–878

    Article  PubMed  CAS  Google Scholar 

  • Cohen J (1995) IL-12 deaths: explanation and a puzzle. Science 270:908

    Article  PubMed  CAS  Google Scholar 

  • Cooke SP, Boxer GM, Lawrence L, Pedley RB, Spencer DI, Begent RH, Chester KA (2001) A strategy for antitumor vascular therapy by targeting the vascular endothelial growth factor: receptor complex. Cancer Res 61:3653–3659

    PubMed  CAS  Google Scholar 

  • Dela Cruz JS, Huang TH, Penichet ML, Morrison SL (2004) Antibody-cytokine fusion proteins: innovative weapons in the war against cancer. Clin Exp Med 4:57–64

    Article  PubMed  CAS  Google Scholar 

  • Dennis MS, Jin H, Dugger D, Yang R, McFarland L, Ogasawara A, Williams S, Cole MJ, Ross S, Schwall R (2007) Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 67:254–261

    Article  PubMed  CAS  Google Scholar 

  • Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784

    Article  PubMed  CAS  Google Scholar 

  • Dumelin CE, Trüssel S, Buller F, Trachsel E, Bootz F, Zhang Y, Manocci L, Beck SC, Drumea-Mirancea M, Seeliger MWP, Baltes C, Müggler TP, Kranz FP, Rudin MP, Melkko S, Scheuermann JP, Neri D (2008) Discovery and applications of a portable albumin binder from a DNA-encoded chemical library. Angew Chem Int Ed Eng 47(17):3196–3201

    Article  CAS  Google Scholar 

  • Durr E, Yu J, Krasinska KM, Carver LA, Yates JR, Testa JE, Oh P, Schnitzer JE (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat Biotechnol 22:985–992

    Article  PubMed  CAS  Google Scholar 

  • Ebbinghaus C, Ronca R, Kaspar M, Grabulovski D, Berndt A, Kosmehl H, Zardi L, Neri D (2005) Engineered vascular-targeting antibody-interferon-gamma fusion protein for cancer therapy. Int J Cancer 116:304–313

    Article  PubMed  CAS  Google Scholar 

  • Fonsatti E, Jekunen AP, Kairemo KJ, Coral S, Snellman M, Nicotra MR, Natali PG, Altomonte M, Maio M (2000) Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin Cancer Res 6:2037–2043

    PubMed  CAS  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  CAS  Google Scholar 

  • Halin C, Niesner U, Villani ME, Zardi L, Neri D (2002a) Tumor-targeting properties of antibody-vascular endothelial growth factor fusion proteins. Int J Cancer 102:109–116

    Article  PubMed  CAS  Google Scholar 

  • Halin C, Rondini S, Nilsson F, Berndt A, Kosmehl H, Zardi L, Neri D (2002b) Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 20:264–269

    Article  PubMed  CAS  Google Scholar 

  • Halin C, Gafner V, Villani ME, Borsi L, Berndt A, Kosmehl H, Zardi L, Neri D (2003) Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res 63:3202–3210

    PubMed  CAS  Google Scholar 

  • Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 4:806–813

    Article  PubMed  CAS  Google Scholar 

  • Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, Shively JE, Wu AM (1996) Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res 56:3055–3061

    PubMed  CAS  Google Scholar 

  • Huang X, Bennett M, Thorpe PE (2005) A monoclonal antibody that binds anionic phospholipids on tumor blood vessels enhances the antitumor effect of docetaxel on human breast tumors in mice. Cancer Res 65:4408–4416

    Article  PubMed  CAS  Google Scholar 

  • Huminiecki L, Bicknell R (2000) In silico cloning of novel endothelial-specific genes. Genome Res 10:1796–1806

    Article  PubMed  CAS  Google Scholar 

  • Jacobson BS, Schnitzer JE, McCaffery M, Palade GE (1992) Isolation and partial characterization of the luminal plasmalemma of microvascular endothelium from rat lungs. Eur J Cell Biol 58:296–306

    PubMed  CAS  Google Scholar 

  • Jain RK (1999) Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1:241–263

    Article  PubMed  CAS  Google Scholar 

  • Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, Broughton L, Wagstaff J, Hakannson L, Groenewegen G, Bailey J, Smith N, Hastings D, Lawrance J, Haroon H, Ward T, McGown AT, Tang M, Levitt D, Marreaud S, Lehmann FF, Herold M, Zwierzina H (2002) Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 94:1484–1493

    PubMed  CAS  Google Scholar 

  • Kaspar M, Trachsel E, Neri D (2007) The antibody-mediated targeted delivery of interleukin-15 and GM-CSF to the tumor neovasculature inhibits tumor growth and metastasis. Cancer Res 67:4940–4948

    Article  PubMed  CAS  Google Scholar 

  • Khan ZA, Caurtero J, Barbin YP, Chan BM, Uniyal S, Chakrabarti S (2005) ED-B fibronectin in non-small cell lung carcinoma. Exp Lung Res 31:701–711

    Article  PubMed  CAS  Google Scholar 

  • Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330

    Article  PubMed  CAS  Google Scholar 

  • Lazar GA, Dang W, Karki S, Vafa O, Peng JS, Hyun L, Chan C, Chung HS, Eivazi A, Yoder SC, Vielmetter J, Carmichael DF, Hayes RJ, Dahiyat BI (2006) Engineered antibody Fc variants with enhanced effector function. Proc Natl Acad Sci USA 103:4005–4010

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, Knudsen B, Bander NH (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57:3629–3634

    PubMed  CAS  Google Scholar 

  • Luster TA, He J, Huang X, Maiti SN, Schroit AJ, de Groot PG, Thorpe PE (2006) Plasma protein beta-2-glycoprotein 1 mediates interaction between the anti-tumor monoclonal antibody 3G4 and anionic phospholipids on endothelial cells. J Biol Chem 281:29863–29871

    Article  PubMed  CAS  Google Scholar 

  • Matsuno F, Haruta Y, Kondo M, Tsai H, Barcos M, Seon BK (1999) Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies. Clin Cancer Res 5:371–382

    PubMed  CAS  Google Scholar 

  • McNeel DG, Eickhoff J, Lee FT, King DM, Alberti D, Thomas JP, Friedl A, Kolesar J, Marnocha R, Volkman J, Zhang J, Hammershaimb L, Zwiebel JA, Wilding G (2005) Phase I trial of a monoclonal antibody specific for alphavbeta3 integrin (MEDI-522) in patients with advanced malignancies, including an assessment of effect on tumor perfusion. Clin Cancer Res 11:7851–7860

    Article  PubMed  CAS  Google Scholar 

  • Melkko S, Halin C, Borsi L, Zardi L, Neri D (2002) An antibody-calmodulin fusion protein reveals a functional dependence between macromolecular isoelectric point and tumor targeting performance. Int J Radiat Oncol Biol Phys 54: 1485–1490

    PubMed  CAS  Google Scholar 

  • Menrad A, Menssen HD (2005) ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin Ther Targets 9:491–500

    Article  PubMed  CAS  Google Scholar 

  • Milowsky MI, Nanus DM, Kostakoglu L, Sheehan CE, Vallabhajosula S, Goldsmith SJ, Ross JS, Bander NH (2007) Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J Clin Oncol 25:540–547

    Article  PubMed  CAS  Google Scholar 

  • Minhajat R, Mori D, Yamasaki F, Sugita Y, Satoh T, Tokunaga O (2006) Organ-specific endoglin (CD105) expression in the angiogenesis of human cancers. Pathol Int 56:717–723

    Article  PubMed  CAS  Google Scholar 

  • Morris MJ, Pandit-Taskar N, Divgi CR, Bender S, O’Donoghue JA, Nacca A, Smith-Jones P, Schwartz L, Slovin S, Finn R, Larson S, Scher HI (2007) Phase I evaluation of J591 as a vascular targeting agent in progressive solid tumors. Clin Cancer Res 13:2707–2713

    Article  PubMed  CAS  Google Scholar 

  • Mulgrew K, Kinneer K, Yao XT, Ward BK, Damschroder MM, Walsh B, Mao SY, Gao C, Kiener PA, Coats S, Kinch MS, Tice DA (2006) Direct targeting of alphavbeta3 integrin on tumor cells with a monoclonal antibody, Abegrin. Mol Cancer Ther 5:3122–3129

    Article  PubMed  CAS  Google Scholar 

  • Neri D, Carnemolla B, Nissim A, Leprini A, Querze G, Balza E, Pini A, Tarli L, Halin C, Neri P, Zardi L, Winter G (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15:1271–1275

    Article  PubMed  CAS  Google Scholar 

  • Neri D, Bicknell R (2005) Tumour vascular targeting. Nat Rev Cancer 5:436–446

    Article  PubMed  CAS  Google Scholar 

  • Niesner U, Halin C, Lozzi L, Gunthert M, Neri P, Wunderli-Allenspach H, Zardi L, Neri D (2002) Quantitation of the tumor-targeting properties of antibody fragments conjugated to cell-permeating HIV-1 TAT peptides. Bioconjug Chem 13:729–736

    Article  PubMed  CAS  Google Scholar 

  • Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635

    Article  PubMed  CAS  Google Scholar 

  • Paganelli G, Grana C, Chinol M, Cremonesi M, De Cicco C, De Braud F, Robertson C, Zurrida S, Casadio C, Zoboli S, Siccardi AG, Veronesi U (1999) Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur J Nucl Med 26:348–357

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546

    Article  PubMed  CAS  Google Scholar 

  • Pelegrin A, Folli S, Buchegger F, Mach JP, Wagnieres G, van den Bergh H (1991) Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer 67:2529–2537

    Article  PubMed  CAS  Google Scholar 

  • Porkka K, Laakkonen P, Hoffman JA, Bernasconi M, Ruoslahti E (2002) A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA 99:7444–7449

    Article  PubMed  CAS  Google Scholar 

  • Ran S, Downes A, Thorpe PE (2002) Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res 62:6132–6140

    PubMed  CAS  Google Scholar 

  • Ran S, He J, Huang X, Soares M, Scothorn D, Thorpe PE (2005) Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res 11:1551–1562

    Article  PubMed  CAS  Google Scholar 

  • Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE 2nd, McLendon RE, Pegram CN, Provenzale JM, Quinn JA, Rich JN, Vredenburgh JJ, Desjardins A, Gururangan S, Badruddoja M, Dowell JM, Wong TZ, Zhao XG, Zalutsky MR, Bigner DD (2006) Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J Clin Oncol 24:115–122

    Article  PubMed  CAS  Google Scholar 

  • Riva P, Franceschi G, Frattarelli M, Lazzari S, Riva N, Giuliani G, Casi M, Sarti G, Guiducci G, Giorgetti G, Gentile R, Santimaria M, Jermann E, Maeke HR (1999) Loco-regional radioimmunotherapy of high-grade malignant gliomas using specific monoclonal antibodies labeled with 90Y: a phase I study. Clin Cancer Res 5:3275s–3280s

    PubMed  CAS  Google Scholar 

  • Roesli C, Neri D, Rybak JN (2006) In vivo protein biotinylation and sample preparation for the proteomic identification of organ- and disease-specific antigens accessible from the vasculature. Nat Protoc 1:192–199

    Article  PubMed  CAS  Google Scholar 

  • Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G (2005) In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat Methods 2:291–298

    Article  PubMed  CAS  Google Scholar 

  • Rybak JN, Roesli C, Kaspar M, Villa A, Neri D (2007a) The extra-domain A of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res 67:10948–10957

    Article  PubMed  CAS  Google Scholar 

  • Rybak JN, Trachsel E, Scheuermann J, Neri D (2007b) Ligand-based vascular targeting of disease. ChemMedChem 2:22–40

    Article  PubMed  CAS  Google Scholar 

  • Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, Leprini A, Borsi L, Castellani P, Zardi L, Neri D, Riva P (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–579

    PubMed  CAS  Google Scholar 

  • Schliemann C, Neri D (2007) Antibody-based targeting of the tumor vasculature. Biochim Biophys Acta 1776:175–192

    PubMed  CAS  Google Scholar 

  • Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5:147–159

    Article  PubMed  CAS  Google Scholar 

  • Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B (2007) Genes that Distinguish Physiological and Pathological Angiogenesis. Cancer Cell 11:539–554

    Article  PubMed  CAS  Google Scholar 

  • Silacci M, Brack SS, Spath N, Buck A, Hillinger S, Arni S, Weder W, Zardi L, Neri D (2006) Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo. Protein Eng Des Sel 19:471–478

    Article  PubMed  CAS  Google Scholar 

  • Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85

    PubMed  CAS  Google Scholar 

  • Singh Jaggi J, Henke E, Seshan SV, Kappel BJ, Chattopadhyay D, May C, McDevitt MR, Nolan D, Mittal V, Benezra R, Scheinberg DA (2007) Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization. PLoS ONE 2:e267

    Article  CAS  Google Scholar 

  • Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  PubMed  CAS  Google Scholar 

  • Siri A, Carnemolla B, Saginati M, Leprini A, Casari G, Baralle F, Zardi L (1991) Human tenascin: primary structure, pre-mRNA splicing patterns and localization of the epitopes recognized by two monoclonal antibodies. Nucleic Acids Res 19:525–531

    Article  PubMed  CAS  Google Scholar 

  • St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  PubMed  CAS  Google Scholar 

  • Stollman TH, Scheer MGW, Leenders WPJ, Verrijp CN, Soede AC, Oyen WJG, Ruers TJM, Boerman OC (2008) Specific imaging of VEFG-A expression with radiolabeled anti-VEGF monoclonal antibody. Int J Cancer 122(10):2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Tarli L, Balza E, Viti F, Borsi L, Castellani P, Berndorff D, Dinkelborg L, Neri D, Zardi L (1999) A high-affinity human antibody that targets tumoral blood vessels. Blood 94:192–198

    PubMed  CAS  Google Scholar 

  • Temming K, Schiffelers RM, Molema G, Kok RJ (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat 8:381–402

    Article  PubMed  CAS  Google Scholar 

  • Tijink BM, Neri D, Leemans CR, Budde M, Dinkelborg LM, Stigter-van Walsum M, Zardi L, van Dongen GA (2006) Radioimmunotherapy of head and neck cancer xenografts using 131I-labeled antibody L19-SIP for selective targeting of tumor vasculature. J Nucl Med 47:1127–1135

    PubMed  CAS  Google Scholar 

  • Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  PubMed  CAS  Google Scholar 

  • Verel I, Visser GW, van Dongen GA (2005) The promise of immuno-PET in radioimmunotherapy. J Nucl Med 46(Suppl 1):164S–171S

    PubMed  Google Scholar 

  • Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak J, Rösli C, Borsi L, Zardi L, Neri D (2008) A high-affinity human monoclonal antibody specific to the alternatively-spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer 122:2405–2413

    Article  PubMed  CAS  Google Scholar 

  • Wang JM, Kumar S, Pye D, van Agthoven AJ, Krupinski J, Hunter RD (1993) A monoclonal antibody detects heterogeneity in vascular endothelium of tumours and normal tissues. Int J Cancer 54:363–370

    Article  PubMed  CAS  Google Scholar 

  • Wu AM, Senter PD (2005) Arming antibodies: prospects and challenges for immunoconjugates. Nat Biotechnol 23:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Zardi L, Carnemolla B, Siri A, Petersen TE, Paolella G, Sebastio G, Baralle FE (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. Embo J 6:2337–2342

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Swiss National Science Foundation, the Gebert-Ruef Foundation, the Schweizer Krebsliga, the ETH Zurich and the European Union projects STROMA, FLUORMMPI and IMMUNOPDT is gratefully acknowledged. C.S. is recipient of a postdoctoral scholarship from the Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schliemann, C., Neri, D. (2010). Antibody-Based Vascular Tumor Targeting. In: Liersch, R., Berdel, W., Kessler, T. (eds) Angiogenesis Inhibition. Recent Results in Cancer Research, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78281-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78281-0_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78280-3

  • Online ISBN: 978-3-540-78281-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics