Skip to main content

Linker Technologies for Antibody–Drug Conjugates

  • Protocol
  • First Online:
Antibody-Drug Conjugates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1045))

Abstract

Antibody–drug conjugates (ADCs), which combine the specificity, favorable pharmacokinetics, and biodistribution of a monoclonal antibody (mAb) with the cytotoxic potency of a drug, are promising new therapies for cancer. Along with the development of monoclonal antibodies (mAbs) and cytotoxic drugs, the design of the linker is of essential importance, because it impacts the efficacy and tolerability of ADCs. The linker needs to provide sufficient stability during systemic circulation but allow for the rapid and efficient release of the cytotoxic drug in an active form inside the tumor cells. This review provides an overview of linker technologies currently used for ADCs and advances that have resulted in linkers with improved properties. Also provided is a brief summary of some considerations for the conjugation of antibody and drug linker such as drug-to-antibody ratio and site of conjugation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walter RB, Raden BW, Kamikura DM et al (2005) Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood 105:1295–1302

    Article  PubMed  CAS  Google Scholar 

  2. Thorpe PE, Wallace PM, Knowles PP et al (1987) New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. Cancer Res 47:5924–5931

    PubMed  CAS  Google Scholar 

  3. Thorpe PE, Wallace PM, Knowles PP et al (1988) Improved antitumor effects of immunotoxins prepared with deglycosylated ricin A-chain and hindered disulfide linkages. Cancer Res 48:6396–6403

    PubMed  CAS  Google Scholar 

  4. Xie H, Audette C, Hoffee M et al (2004) Pharmacokinetics and biodistribution of the antitumor immunoconjugate, cantuzumab mertansine (huC242-DM1), and its two components in mice. J Pharmacol Exp Ther 308:1073–1082

    Article  PubMed  CAS  Google Scholar 

  5. Trail PA, Willner D, Lasch SJ et al (1993) Cure of xenografted humancarcinomas by BR96-doxorubicin immunoconjugates. Science 261:212–215

    Article  PubMed  CAS  Google Scholar 

  6. Saleh MN, Sugarman S, Murray J et al (2000) Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with Lewis Y-expressing epithelial tumors. J Clin Oncol 18:2282–2292

    PubMed  CAS  Google Scholar 

  7. Boghaert ER, Khandke KM, Sridharan L et al (2008) Determination of pharmacokinetic values of calicheamicin-antibody conjugates in mice by plasmon resonance analysis of small (5 μl) blood samples. Cancer Chemother Pharmacol 61:1027–1035

    Article  PubMed  CAS  Google Scholar 

  8. Doronina SO, Mendelsohn BA, Bovee TD et al (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem 17:114–124

    Article  PubMed  CAS  Google Scholar 

  9. Doronina SO, Toki BE, Torgov MY et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784

    Article  PubMed  CAS  Google Scholar 

  10. Dubowchik GM, Walker MA (1999) Receptormediated and enzyme-dependent targeting of cytotoxic anticancer drugs. Pharmacol Ther 83:67–123

    Article  PubMed  CAS  Google Scholar 

  11. Jeffrey SC, Andreyka JB, Bernhardt SX et al (2006) Development and properties of beta-glucuronide linkers for monoclonal antibody–drug conjugates. Bioconjug Chem 17:831–840

    Article  PubMed  CAS  Google Scholar 

  12. Erickson HK, Park PU, Widdison WC et al (2006) Antibody–maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res 66:4426–4433

    Article  PubMed  CAS  Google Scholar 

  13. Kovtun YV, Audette CA, Ye Y et al (2006) Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66:3214–3221

    Article  PubMed  CAS  Google Scholar 

  14. Okeley NM, Miyamoto JB, Zhang X et al (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody–drug conjugate. Clin Cancer Res 16:888–897

    Article  PubMed  CAS  Google Scholar 

  15. Van der Velden VHJ, te Marvelde JG, Hoogeveen PG et al (2001) Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 97:3197–3204

    Article  Google Scholar 

  16. Lewis Phillips G, Li G, Dugger DL et al (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody–cytotoxic drug conjugate. Cancer Res 68:9280–9290

    Article  PubMed  CAS  Google Scholar 

  17. Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  PubMed  CAS  Google Scholar 

  18. Hamann PR, Hinman LM, Hollander I et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody–calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13:47–58

    Article  PubMed  CAS  Google Scholar 

  19. Dillman RO, Johnson DE, Shawler DL et al (1988) Superiority of an acid-labile daunorubicin monoclonal antibody immunoconjugate compared to free drug. Cancer Res 48:6097–6102

    PubMed  CAS  Google Scholar 

  20. Yang HM, Reisfeld RA (1988) Doxorubicin conjugated to a monoclonal antibody directed against a melanoma-associated proteoglycan suppresses growth of established tumor xenografts in nude mice. Proc Natl Acad Sci U S A 85:1189–1193

    Article  PubMed  CAS  Google Scholar 

  21. Schneck D, Butler F, Dugan W et al (1990) Disposition of a murine monoclonal antibody vinca conjugate (KS1/4-DAVLB) in patients with adenocarcinomas. Clin Pharmacol Ther 47:36–41

    Article  PubMed  CAS  Google Scholar 

  22. Laguzza BC, Nichols CL, Briggs SL et al (1989) New antitumor monoclonal-antibody vinca conjugates LY203725 and related-compounds—design, preparation, and representative in vivo activity. J Med Chem 32:548–555

    Article  PubMed  CAS  Google Scholar 

  23. Greenfield RS, Kaneko T, Daues A et al (1990) Evaluation invitro of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker. Cancer Res 50:6600–6607

    PubMed  CAS  Google Scholar 

  24. Trail PA, Miner DV, Lasch SJ et al (1992) Antigen-specific activity of carcinoma-reactive BR64-doxorubicin conjugates evaluated in vitro and in human tumor xenograft models. Cancer Res 52:5693–5700

    PubMed  CAS  Google Scholar 

  25. Braslawsky GR, Edson MA, Pearce W et al (1990) Antitumor activity of adriamycin (hydrazone-linked) immunoconjugates compared with free adriamycin and specificity of tumor cell killing. Cancer Res 50:6608–6614

    PubMed  CAS  Google Scholar 

  26. Dubowchik GM, Firestone RA, Padilla L et al (2002) Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: model studies of enzymatic drug release and antigen specific in vitro anticancer activity. Bioconjug Chem 13:855–869

    Article  PubMed  CAS  Google Scholar 

  27. King HD, Yurgaitis D, Wilner D et al (1999) Monoclonal antibody conjugates of doxorubicin prepared with branched linkers: a novel method for increasing the potency of doxorubicin immunoconjugates. Bioconjug Chem 10:279–288

    Article  PubMed  CAS  Google Scholar 

  28. Tolcher AW, Sugarman S, Gelmon KA (1999) Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J Clin Oncol 17:478–484

    PubMed  CAS  Google Scholar 

  29. King HD, Staab AJ, Pham-Kaplita K et al (2003) BR96 conjugates of highly potent anthracyclines. Bioorg Med Chem Lett 13:2119–2122

    Article  PubMed  CAS  Google Scholar 

  30. Lee MD, Dunne TS, Siegel MM et al (1987) Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicin y1 I. J Am Chem Soc 109:3464–3466

    Article  CAS  Google Scholar 

  31. Damle NK, Frost P (2003) Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr Opin Pharmacol 3:386–390

    Article  PubMed  CAS  Google Scholar 

  32. Damle NK (2004) Tumour-targeted chemotherapy with immunoconjugates of calicheamicin. Expert Opin Biol Ther 4:1445–1452

    Article  PubMed  CAS  Google Scholar 

  33. Sievers EL, Appelbaum FR, Spielberger RT et al (1999) Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 93:3678–3684

    PubMed  CAS  Google Scholar 

  34. Sievers EL, Larson R, Estey E et al (1999) Preliminary results of the efficacy and safety of CMA-676 in patients with AML in first relapse. Proc Am Soc Clin Oncol 18:Abstract 21

    Google Scholar 

  35. Bross PF, Beitz J, Chen G et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490–1496

    PubMed  CAS  Google Scholar 

  36. Hamann PR, Hinman LM, Beyer CF et al (2002) An anti-CD33 antibodycalicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem 13:40–46

    Article  PubMed  CAS  Google Scholar 

  37. Hinman LM, Hamann PR, Upeslacis J (1995) Preparation of conjugates to monoclonal antibodies. In: Borders DB, Doyle TW (eds) Enediyne antibiotics as antitumor agents, 1st edn. Marcel Dekker, New York, pp 87–106

    Google Scholar 

  38. Boghaert E, Khandke K, Sridharan L et al (2006) Tumoricidal effect of calicheamicin immuno-conjugates using a passive targeting strategy. Int J Oncol 28:675–684

    PubMed  CAS  Google Scholar 

  39. Jedema I, Barge RMY, van der Velden VHJ et al (2004) Internalization and cell cycle-dependent killing of leukemic cells by gemtuzumab ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia 18:316–325

    Article  PubMed  CAS  Google Scholar 

  40. DiJoseph JF, Dougher MM, Kalyandrug LB et al (2006) Antitumor efficacy of a combination of CMC-544 (inotuzumab ozogamicin), a CD22-targeted cytotoxic immunoconjugate of calicheamicin, and rituximab against non-Hodgkin’s B-cell lymphoma. Clin Cancer Res 12:242–249

    Article  PubMed  CAS  Google Scholar 

  41. Hinman LM, Hamann PR, Wallace R et al (1993) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53:3336–3342

    PubMed  CAS  Google Scholar 

  42. Hamann PR, Hinman LM, Beyer CF et al (2005) An anti-MUCl antibodycalicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug Chem 16:346–353

    Article  PubMed  CAS  Google Scholar 

  43. Hamann PR, Hinman LM, Beyer CF et al (2005) A calicheamicin conjugate with a fully humanized anti-MUC1 Antibody shows potent antitumor effects in breast and ovarian tumor xenografts. Bioconjug Chem 16:354–360

    Article  PubMed  CAS  Google Scholar 

  44. Chan SY, Gordon AN, Coleman RE et al (2003) A phase II study of the cytotoxic immunoconjugate CMB-401(hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol Immunother 52:243–248

    PubMed  CAS  Google Scholar 

  45. DiJoseph JF, Popplewell A, Tickle S et al (2005) Antibody-targeted chemotherapy of B-ce1llymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 54:11–24

    Article  PubMed  CAS  Google Scholar 

  46. DiJoseph JF, Armellino DC, Boghaert ER et al (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-Iymphoid malignancies. Blood 103:1807–1814

    Article  PubMed  CAS  Google Scholar 

  47. DiJoseph JF, Goad ME, Dougher MM et al (2004) Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res 10:8620–8629

    Article  PubMed  CAS  Google Scholar 

  48. Wong BY, Dang NH (2010) Inotuzumab ozogamicin as novel therapy in lymphomas. Expert Opin Biol Ther 10:1251–1258

    Article  PubMed  CAS  Google Scholar 

  49. Mugundu G, Vandendries E, Boni J (2012) Reported Interim findings. Annu Meet Am Assoc Canc Res J PO.ET05.03

    Google Scholar 

  50. Boghaert ER, Sridharan L, Armellino DC et al (2004) Antibody-targeted chemotherapy with the calicheamicin conjugate hu3S I 93-N-acetyl γ calicheamicin dimethyl hydrazide targets Lewis Y and eliminates Lewis Y-positive human carcinoma cells and xenografts. Clin Cancer Res 10:4538–4549

    Article  PubMed  CAS  Google Scholar 

  51. Boghaert ER, Sridharan L, Khandke KM et al (2008) The oncofetal protein, 5T4, is a suitable target for antibody-guided anti-cancer chemotherapy with calicheamicin. Int J Oncol 32:221–234

    PubMed  CAS  Google Scholar 

  52. Appenzeller-Herzog C, Ellgaard L (2008) The human PDI family: versatility packed into a single fold. Biochim Biophys Acta 1783:535–548

    Article  PubMed  CAS  Google Scholar 

  53. Wu G, Fang YZ, Yang S et al (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  54. Mills BJ, Lang CA (1996) Differential distribution of free and bound glutathione and cyst(e)ine in human blood. Biochem Pharmacol 52:401–406

    Article  PubMed  CAS  Google Scholar 

  55. Russo A, Degraff W, Friedman N et al (1986) Selective modulation of glutathione levels in human normal versus tumor-cells and subsequent differential response to chemotherapy drugs. Cancer Res 46:2845–2848

    PubMed  CAS  Google Scholar 

  56. Sedlacek H-H, Seemann G, Hoffmann D et al (1993) Antibodies as carriers of cytotoxicity. In: Queisser W, Scheithauer W (eds) Contributions to oncology, vol 43, 1st edn. Karger, Basel, pp 1–208

    Google Scholar 

  57. De Groot FMH, Damen EWP, Scheeren HW (2001) Anticancer prodrugs for application in monotherapy: targeting hypoxia, tumor-associated enzymes, and receptors. Curr Med Chem 8:1093–1122

    Article  PubMed  Google Scholar 

  58. Ojima I, Slater JC, Michaud E et al (1996) Syntheses and structure-activity relationships of the second generation antitumor taxoids. exceptional activity against drug-resistant cancer cells. J Med Chem 39:3889–3896

    Article  PubMed  CAS  Google Scholar 

  59. Ojima I, Slater JS, Kuduk SD et al (1997) Syntheses and structure-activity relationships of taxoids derived from 14β-Hydroxy-10-deacetylbaccatin III. J Med Chem 40:267–278

    Article  PubMed  CAS  Google Scholar 

  60. Lin S, Geng X, Qu C et al (2000) Synthesis of highly potent second-generation taxoids through effective kinetic resolution coupling of racemic β-lactams with baccatins. Chirality 12:431–441

    Article  PubMed  CAS  Google Scholar 

  61. Ojima I, Geng X, Wu X et al (2002) Tumor-specific novel taxoid monoclonal antibody conjugates. J Med Chem 45:5620–5623

    Article  PubMed  CAS  Google Scholar 

  62. Chari RVJ (2008) Targeted cancer therapy: conferring specificity to cytotoxicdrugs. Acc Chem Res 41:98–107

    Article  PubMed  CAS  Google Scholar 

  63. Widdison WC, Wilhelm SD, Cavanagh EE et al (2006) Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem 49:4392–4408

    Article  PubMed  CAS  Google Scholar 

  64. Austin CD, Wen X, Gazzard L et al (2005) Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody–drug conjugates. Proc Natl Acad Sci U S A 102:17987–17992

    Article  PubMed  CAS  Google Scholar 

  65. Kellogg BA, Garrett L, Kovtun Y et al (2011) Disulfide-linked antibody–maytansinoid conjugates: optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug Chem 22:717–727

    Article  PubMed  CAS  Google Scholar 

  66. Franano FN, Edwards WB, Welch MJ et al (1994) Metabolism of receptor targeted 111In-DTPA-glycoproteins: identification of 111In-DTPA-epsilonlysine as the primary metabolic and excretory product. Nucl Med Biol 21:1023–1034

    Article  PubMed  CAS  Google Scholar 

  67. Kovtun YV, Goldmacher VS (2007) Cell killing by antibody–drug conjugates. Cancer Lett 255:232–240

    Article  PubMed  CAS  Google Scholar 

  68. Erickson H, Wilhelm S, Widdison W et al (2008) Evaluation of the cytotoxic potencies of the major maytansinoid metabolites of antibody–maytansinoid conjugates detected in vitro and in preclinical mouse models. AACR Meeting Abstracts 2150

    Google Scholar 

  69. Tanimoto M, Scheinberg DA, Cordon-Cardo C et al (1989) Restricted expression of an early myeloid and monocytic cell surface antigen defined by monoclonal antibody M195. Leukemia 3:339–348

    PubMed  CAS  Google Scholar 

  70. Liu C, Tadayoni BM, Bourret LA et al (1996) Eradication of large colontumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci U S A 93:8618–8623

    Article  PubMed  CAS  Google Scholar 

  71. Aboukameel A, Goustin A-S, Mohammad R et al (2007) Superior anti-tumor activity of the CD 19-directed immunotoxin, SAR3419 to rituximab in non-Hodgkin’s xenograft animal models: preclinical evaluation. Blood 110:2339 (ASH Annual Meeting Abstracts)

    Google Scholar 

  72. Legrand O, Vidriales MB, Thomas X et al (2007) An open label, dose escalation study of A VE9633 administered as a single agent by intravenous (IV) infusion weekly for 2 weeks in 4-week cycle to patients with relapsed or refractory CD33-positive acute myeloid leukemia (AML). Blood 110:1850 (ASH Annual Meeting Abstracts)

    Google Scholar 

  73. Tassone P, Gozzini A, Goldmacher V et al (2004) In vitro and in vivo activity of the maytansinoid immunoconjugate huN90 I-N2′-deacetyl-N2′(3-mercapto-l-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res 64:4629–4636

    Article  PubMed  CAS  Google Scholar 

  74. Polson AG, Yu S-F, Elkins K et al (2007) Antibody–drug conjugates targeted to CD79 for the treatment of non-Hodgkin lymphoma. Blood 110:616–623

    Article  PubMed  CAS  Google Scholar 

  75. Tassone P, Goldmacher VS, Neri P et al (2004) Cytotoxic activity of the maytansinoid immunoconjugate B-B4-DMI against CD138+ multiple myeloma cells. Blood 104:3688–3696

    Article  PubMed  CAS  Google Scholar 

  76. Ranson M, Sliwkowski MX (2002) Perspectives on anti-HER monoclonal antibodies. Oncology 63:17–24

    Article  PubMed  CAS  Google Scholar 

  77. Ross S, Spencer SD, Holcomb I et al (2002) Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate. Cancer Res 62:2546–2553

    PubMed  CAS  Google Scholar 

  78. Henry MD, Wen S, Silva MD et al (2004) A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res 64:7995–8001

    Article  PubMed  CAS  Google Scholar 

  79. Ciechanover A (2005) Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Angew Chem Int Ed Engl 44:5944–5967

    Article  PubMed  CAS  Google Scholar 

  80. Sanderson RJ, Hering MA, James SF et al (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11:843–852

    PubMed  CAS  Google Scholar 

  81. Koblinski JE, Ahram M, Sloane BF (2000) Unraveling the role of proteases in cancer. Clin Chim Acta 291:113–135

    Article  PubMed  CAS  Google Scholar 

  82. Kovár M, Strohalm J, Etrych T et al (2002) Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: a novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconjug Chem 13:206–215

    Article  PubMed  CAS  Google Scholar 

  83. Versluis AJ, Rump ET, Rensen PCN et al (1998) Synthesis of a lipophilic daunorubicin derivative and its incorporation into lipidic carriers developed for LDL receptor-mediated tumor therapy. Pharm Res 15:531–537

    Article  PubMed  CAS  Google Scholar 

  84. Studer M, Kroger LA, DeNardo SJ et al (1992) Influence of a peptide linker on biodistribution and metabolism of antibody-conjugated benzyl EDTA. Comparison of enzymatic digestion in vitro and in vivo. Bioconjug Chem 3:424–429

    Article  PubMed  CAS  Google Scholar 

  85. Kirschke H, Barrett AJ, Rawlings ND (1995) Cathepsin B in protein profiles proteinases 1. In: Sheterline P (ed) Lysosomal cysteine proteinases, 1st edn. Academic Press, London, pp 1587–1643

    Google Scholar 

  86. Otto H-H, Schirmeister T (1997) Cysteine proteases and their inhibitors. Chem Rev 97:133–172

    Article  PubMed  CAS  Google Scholar 

  87. Trouet A, Masquelier M, Baurain R et al (1982) A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate: in vitro and in vivo studies. Proc Natl Acad Sci U S A 79:626–629

    Article  PubMed  CAS  Google Scholar 

  88. Toki BE, Cerveny CG, Wahl AF et al (2002) Protease-mediated fragmentation of p-amidobenzyl ethers: a new strategy for the activation of anticancer prodrugs. J Org Chem 67:1866–1872

    Article  PubMed  CAS  Google Scholar 

  89. Dubowchik GM, Firestone RA (1998) Cathepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin. Bioorg Med Chem Lett 8:3341–3346

    Article  PubMed  CAS  Google Scholar 

  90. Dubowchik GM, Mosure K, Knipe JO et al (1998) Cathepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (Taxol), mitomycin C and doxorubicin. Bioorg Med Chem Lett 8:3347–3352

    Article  PubMed  CAS  Google Scholar 

  91. Walker MA, Dubowchik GM, Hofstead SJ et al (2002) Synthesis of an immunoconjugate of camptothecin. Bioorg Med Chem Lett 12:217–219

    Article  PubMed  CAS  Google Scholar 

  92. Walker M, King HD, Dalterio RA et al (2004) Monoclonal antibody mediated intracellular targeting of tallysomycin S(10b). Bioorg Med Chem Lett 14:4323–4327

    Article  PubMed  CAS  Google Scholar 

  93. Francisco JA, Cerveny CG, Meyer DL et al (2003) cAC10-vcMMAE, an anti-CD30-monomethylauristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465

    Article  PubMed  CAS  Google Scholar 

  94. Doronina SO, Bovee TD, Meyer DW et al (2008) Novel peptide linkers for highly potent antibody–auristatin conjugate. Bioconjug Chem 19:1960–1963

    Article  PubMed  CAS  Google Scholar 

  95. Bartlett N, Forero-Torres A, Rosenblatt J et al (2009) Complete remissions with weekly dosing of SGN-35, a novel antibody–dug conjugate (ADC) targeting CD30, in phase I dose-escalation study in patients with relapsed or refractory Hodgkin lymphoma (HL) or systemic anaplastic large cell lymphoma (sALCL). J Clin Oncol 27:8500 (ASCO Annual Meeting Proceedings)

    Google Scholar 

  96. Younes A, Bartlett NL, Leonard JP et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363:1812–1821

    Article  PubMed  CAS  Google Scholar 

  97. Younes A, Gopa AK, Smith SE et al (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory hodgkin’s lymphoma. J Clin Oncol 30:2183–2189

    Article  PubMed  CAS  Google Scholar 

  98. Gualberto A (2012) Brentuximab vedotin (SGN-35), an antibody–drug conjugate for the treatment of CD30-positive malignancies. Expert Opin Investig Drugs 21:205–216

    Article  PubMed  CAS  Google Scholar 

  99. Thompson JA, Forero-Torres A, Heath EI et al (2011) The effect of SGN-75, a novel antibody–drug conjugate (ADC), in treatment of patients with renal cell carcinoma (RCC) or non-Hodgkin lymphoma (NHL): a phase I study. J Clin Oncol 29:3071 (ASCO Annual Meeting Proceedings)

    Article  Google Scholar 

  100. Naumovski L, Junutula JR (2010) Glembatumumab vedotin, a conjugate of an anti-glycoprotein non-metastatic melanoma protein B mAb and monomethyl auristatin E for the treatment of melanoma and breast cancer. Curr Opin Mol Ther 12:248–257

    PubMed  CAS  Google Scholar 

  101. Keir CH, Vahdat LT (2012) The use of an antibody drug conjugate, glembatumumab vedotin (CDX-011), for the treatment of breast cancer. Expert Opin Biol Ther 12:259–263

    Article  PubMed  CAS  Google Scholar 

  102. Ma D, Zhang H, Donovan GP et al (2007) Preclinical studies of PSMA ADC, an auristatin-conjugated fully human monoclonal antibody to prostate-specific membrane antigen. Prostate Cancer Symposium, Abstract 87

    Google Scholar 

  103. Jeffrey SC, Nguyen MT, Andreyka JB et al (2006) Dipeptide-based highly potent doxorubicin antibody conjugates. Bioorg Med Chem Lett 16:358–362

    Article  PubMed  CAS  Google Scholar 

  104. Govindan SV, Cardillo TM, Tat F et al (2012) Optimal cleavable linker for antibody–SN-38 conjugates for cancer therapy: impact of linker’s stability on efficacy. Cancer Res 72:2526 (Proceedings: AACR)

    Article  Google Scholar 

  105. Sharkey RM, Govindan SV, Cardillo TM et al (2012) Epratuzumab-SN-38: a new antibody–drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther 11:224–234

    Article  PubMed  CAS  Google Scholar 

  106. Govindan SV, Cardillo TM, Moon S-J et al (2009) CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res 15:6052–6061

    Article  PubMed  CAS  Google Scholar 

  107. Cardillo TM, Govindan SV, Sharkey RM et al (2011) Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: preclinical studies in human cancer xenograft models and monkeys. Clin Cancer Res 17:3157–3169

    Article  PubMed  CAS  Google Scholar 

  108. Sharkey RM, Karacay H, Govindan SV et al (2011) Combination radioimmunotherapy and chemoimmunotherapy involving different or the same targets improves therapy of human pancreatic carcinoma xenograft models. Mol Cancer Ther 10:1072–1081

    Article  PubMed  CAS  Google Scholar 

  109. Govindan SV, Goldenberg DM (2012) Designing immunoconjugates for cancer therapy. Expert Opin Biol Ther 12:873–890

    Article  PubMed  CAS  Google Scholar 

  110. Derwin D, Passmore D, Sung J et al (2010) Activation of antibody drug conjugate MDX-1203 by human carboxylesterase 2. Proc Am Assoc Cancer Res 51:Abstract 2575

    Google Scholar 

  111. Jeffrey SC, Torgov MY, Andreyka JB et al (2005) Design, synthesis, and in vitro evaluation of dipeptide-based antibody minor groove binder conjugates. J Med Chem 48(5):1344–1358

    Article  PubMed  CAS  Google Scholar 

  112. Albin N, Massaad L, Toussaint C et al (1993) Main drug-metabolizing enzyme systems in human breast tumors and peritumoral tissues. Cancer Res 53:3541–3546

    PubMed  CAS  Google Scholar 

  113. Jeffrey SC, Nguyen MT, Moser RF et al (2007) Minor groove binder antibody conjugates employing a water soluble beta-glucuronide linker. Bioorg Med Chem Lett 17:2278–2280

    Article  PubMed  CAS  Google Scholar 

  114. Jiang X, García-Fortanet J, de Brabander JK (2005) Synthesis and complete stereochemical assignment of psymberin/irciniastatin A. J Am Chem Soc 127:11254–11255

    Article  PubMed  CAS  Google Scholar 

  115. Alley SC, Zhang X, Okeley NM (2007) Effects of linker chemistry on tumor targeting by anti-CD70 antibody–drug conjugates. Proc Am Assoc Cancer Res 48

    Google Scholar 

  116. Polson AG, Calemine-Fenaux J, Chan P et al (2009) Antibody–drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res 69:2358–2364

    Article  PubMed  CAS  Google Scholar 

  117. Singh R, Erickson HK (2009) Antibody–cytotoxic agent conjugates: preparation and characterization. In: Dimitrov AS (ed) Methods in molecular biology, 1st edn. Springer, Humana Press, New York, pp 445–467

    Google Scholar 

  118. Polson AG, Williams M, Gray AM et al (2010) Anti-CD22-MCC-DM1: an antibody–drug conjugate with a stable linker for the treatment of non-Hodgkin’s lymphoma. Leukemia 24:1566–1573

    Article  PubMed  CAS  Google Scholar 

  119. Endo N, Takeda Y, Kishida K et al (1987) Target-selective cytotoxicity of methotrexate conjugated with monoclonal anti-mm46 antibody. Cancer Immunol Immunother 25:1–6

    Article  PubMed  CAS  Google Scholar 

  120. Pimm MV, Paul MA, Ogumuyiwa Y et al (1988) Biodistribution and tumor-localization of a daunomycin monoclonal antibody conjugate in nude-mice with human-tumor xenografts. Cancer Immunol Immunother 27:267–271

    Article  PubMed  CAS  Google Scholar 

  121. Spearman ME, Goodwin RM, Apelgren LD et al (1987) Disposition of the monoclonal antibody–vinca alkaloid conjugate ks1/4-davlb (ly256787) and free 4-desacetylvinblastine in tumor-bearing nude-mice. J Pharmacol Exp Ther 241:695–703

    PubMed  CAS  Google Scholar 

  122. Kato Y, Tsukada Y, Hara T et al (1983) Enhanced antitumor activity of mitomycin C conjugated with anti-alpha-fetoprotein antibody by a novel method of conjugation. J Appl Biochem 5:313–319

    PubMed  CAS  Google Scholar 

  123. Rowland AJ, Pietersz GA, McKenzie IF (1993) Preclinical investigation of the antitumour effects of anti-CD19-idarubicin immunoconjugates. Cancer Immunol Immunother 37:195–202

    Article  PubMed  CAS  Google Scholar 

  124. Smyth MJ, Pietersz GA, McKenzie IF (1987) Selective enhancement of antitumor-activity of N-acetyl melphalan upon conjugation to monoclonal-antibodies. Cancer Res 47:62–69

    PubMed  CAS  Google Scholar 

  125. Tolcher AW, Ochoa L, Hammond LA et al (2003) Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 21:211–222

    Article  PubMed  CAS  Google Scholar 

  126. Erickson HK, Widdison WC, Mayo MF et al (2010) Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody–maytansinoid conjugates. Bioconjug Chem 21:84–92

    Article  PubMed  CAS  Google Scholar 

  127. Sun X, Widdison W, Mayo M et al (2011) Design of antibody–maytansinoid conjugates allows for efficient detoxification via liver metabolism. Bioconjug Chem 22:728–735

    Article  PubMed  CAS  Google Scholar 

  128. Krop IE, Beeram M, Modi S et al (2010) Phase I study of Trastuzumab-DM1, an HER2 antibody–drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28:2698–2704

    Article  PubMed  CAS  Google Scholar 

  129. Vogel CL, Burris HA, Limentani S et al (2009) A phase II study of trastuzumab-DM1 (T-DM1), a HER2 antibody–drug conjugate (ADC), in patients (pts) with HER2+ metastatic breast cancer (MBC): final results. J Clin Oncol 15(Suppl):Abstract 1017

    Google Scholar 

  130. Takara K, Sakaeda T, Okumura K (2006) An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Curr Pharm Des 12:273–286

    Article  PubMed  CAS  Google Scholar 

  131. Leonard GD, Fojo T, Bates SE (2003) The role of ABC transporters in clinical practice. Oncologist 8:411–424

    Article  PubMed  CAS  Google Scholar 

  132. Kovtun YV, Audette CA, Mayo MF et al (2010) Antibody–maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res 70(6):2528–2537

    Article  PubMed  CAS  Google Scholar 

  133. Alley SC, Benjamin DR, Jeffrey SC et al (2008) The contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19:759–765

    Article  PubMed  CAS  Google Scholar 

  134. Oflazoglu E, Stone IJ, Gordon K et al (2008) Potent anticarcinoma activity of the humanized anti-CD70 antibody h1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin Cancer Res 14:6171–6180

    Article  PubMed  CAS  Google Scholar 

  135. Wang L, Amphlett G, Blättler WA et al (2005) Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901–DM1, by mass spectrometry. Protein Sci 14:2436–2446

    Article  PubMed  CAS  Google Scholar 

  136. Willner D, Trail PA, Hofstead SJ et al (1993) (6-Maleimidocaproyl)hydrazone of doxorubicin: a new derivative for the preparation of immunoconjugates of doxorubicin. Bioconjug Chem 4:521–527

    Article  PubMed  CAS  Google Scholar 

  137. Schroeder DD, Tankersly DL, Lundblad JL (1981) A new preparation of modified immune serum globulin (human) suitable for intravenous administration. I. Standardization of the reduction and alkylation reaction. Vox Sang 40:373–382

    Article  PubMed  CAS  Google Scholar 

  138. Hamblett KJ, Senter PD, Chace DF et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070

    Article  PubMed  CAS  Google Scholar 

  139. Sun MMC, Beam KS, Cerveny CG et al (2005) Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 16:1282–1290

    Article  PubMed  CAS  Google Scholar 

  140. Junutula JR, Raab H, Clark S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932

    Article  PubMed  CAS  Google Scholar 

  141. Vater CA, Goldmacher VS (2010) Antibody–cytotoxic compound conjugates for oncology. In: Reddy LH, Couvreur P (eds) Macromolecular anticancer therapeutics, 1st edn. Springer, New York, pp 331–369

    Chapter  Google Scholar 

  142. McDonagh CF, Turcott E, Westendorf L et al (2006) Engineered antibody–drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19:299–307

    Article  PubMed  CAS  Google Scholar 

  143. Gillies SD, Wesolowski JS (1990) Antigen binding and biological activities of engineered mutant chimeric antibodies with human tumor specificities. Hum Antibodies Hybridomas 1:47–54

    PubMed  CAS  Google Scholar 

  144. Junutula JR, Flagella KM, Graham RA et al (2010) Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res 16:4769–4778

    Article  PubMed  CAS  Google Scholar 

  145. Ambrx (2012) http://www.ambrx.com/wt/page/recode. Accessed 20 Sep 2012

  146. Sapra P, Tchistiakova L, Dushin R et al (2012) Novel site-specific antibody drug conjugates based on novel amino acid incorporation technology have improved pharmaceutical properties over conventional antibody drug conjugates. Proc Am Assoc Cancer Res 72:Abstract 5691

    Google Scholar 

  147. Allozyne (2012) http://www.allozyne.com/what/platform. Accessed 20 Sep 2012

  148. Redwood Bioscience (2012) http://www.redwoodbioscience.com/background/redwood-platform/; http://www.redwoodbioscience.com/background/antibody-drug-conjugates/. Accessed June 2013

  149. Jeger S, Zimmermann K, Blanc A et al (2010) Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed 49:9995–9997

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nolting, B. (2013). Linker Technologies for Antibody–Drug Conjugates. In: Ducry, L. (eds) Antibody-Drug Conjugates. Methods in Molecular Biology, vol 1045. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-541-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-541-5_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-540-8

  • Online ISBN: 978-1-62703-541-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics