TABLE 2.

Summary of Deep-Learning Techniques for SPECT Image Enhancement

PaperData detailsArchitectureLoss function
Ramon et al. (46)930 cardiac torso 99mTc-sestamibi3D convolutional autoencoderMSE
Ramon et al. (47)1,052 cardiac torso 99mTc-sestamibiConvolutional autoencoder, CNNMSE
Sun et al. (48)100 simulated; 20 cardiac torso clinical 99mTc-sestamibiPix2Pix GANMAE; adversarial
Sohlberg et al. (49)93 cardiac torso 99mTc-tetrososminCNN, residual network, U-Net, cGANMSE
Yu et al. (50)4,800 simulatedCNNMSE
Shiri et al. (51)363 cardiac torso 99mTc-sestamibiDeep residual neural networkMSE
Lin et al. (52)112 cardiac torso 99mTc-DMSA3D residual U-NetMSE
Pan et al. (53)20 cardiac torso 99mTc-MDP SPECT/CTLesion-attention weighted U2NetMAE; structural similarity index
Liu et al. (54)895 cardiac torso 99mTc-sestamibiNoise2Noise (U-Net)MSE
Liu et al. (55)1,050 cardiac torso 99mTc-sestamibi3D-coupled UNetMSE
Xie et al. (56)28 cardiac 99mTc-RBCDensely connected multidimensional dynamic U-NetMAE; structural similarity index; Sobel operator; intramyocardial blood volume
  • MSE = mean-squared error; MAE = mean absolute error; DMSA = pentavalent dimercaptosuccinic acid; MDP = methyl diphosphonate; RBC = red blood cell.