SUPPLEMENTAL TABLE 1. Cell lines evaluated in this study and relevant mutations.

Cell line	Mutation
IMR-05	neurofibromatosis type 1
IMR-32	N/A
NBL-S	anaplastic lymphoma kinase
NB-EBc1	tumor protein p53
CHP-134	N/A
CHP-212	anaplastic lymphoma kinase
SMS-SAN	tumor protein p53
NB-69	tumor protein p53
KELLY	N/A
NGP	N/A
NB-1691	N/A
SK-N-SH	N/A
SK-N-BE(2)-C	N/A
NLF	N/A
SK-N-DZ	N/A
SK-N-BE(2)	N/A
SK-N-AS	N/A
NB-SD	N/A
SK-N-FI	N/A

*N/A=not applicable

SUPPLEMENTAL TABLE 2. EC_{50} values of radionuclide therapy in IMR-05 and NLF

	IMR-05	NLF
$\left[{ }^{[211} \mathrm{At}\right] \mathrm{MM} 4$	$620 \pm 30 \mathrm{pCi} / \mathrm{mL}$	$20 \pm 4 \mathrm{nCi} / \mathrm{mL}$
$\left[{ }^{[25}\right] \mathrm{KX} 1$	$12.5 \pm 0.9 \mathrm{nCi} / \mathrm{mL}$	$980 \pm 60 \mathrm{nCi} / \mathrm{mL}$
$\left[{ }^{[11} \mathrm{At}\right] \mathrm{NaAt}$	$2.1 \pm 0.2 \mu \mathrm{Ci} / \mathrm{mL}$	
$\left[{ }^{[31}\right] \mathrm{KX} 1$	$22.6 \pm 1.4 \mathrm{nCi} / \mathrm{mL}$	$3.8 \pm 0.1 \mu \mathrm{Ci} / \mathrm{mL}$
$\left[{ }^{[25}\right] \mathrm{MIBG}$	$82.8 \pm 0.8 \mathrm{nCi} / \mathrm{mL}$	$8.2 \pm 0.5 \mu \mathrm{Ci} / \mathrm{mL}$

*Values are reported as mean \pm SEM.

SUPPLEMENTAL TABLE 3: Parameters of IMR-05 and NLF in the linear-quadratic model

	IMR-05		NLF	
	a	β	a	β
[${ }^{1251}$]KX1	3.8 ± 0.2	N/A	0.42 ± 0.03	N/A
[${ }^{1311}$]KX1	2.00 ± 0.03	N/A	0.25 ± 0.01	N/A
[${ }^{1251}$]MIBG	0.65 ± 0.09	N/A	0.23 ± 0.02	N/A
[${ }^{11} \mathrm{At}$]MM4	13.6 ± 0.6	N/A	1.3 ± 0.2	N/A
$\left.{ }^{211} \mathrm{At}\right] \mathrm{NaAt}{ }^{\text {x }}$	3.7 ± 0.2	N/A	0.86 ± 0.08	N/A
External gamma	0.81 ± 0.06	0.22 ± 0.06	0.25 ± 0.01	N/A

*Values are reported as mean \pm SEM. N/A=not applicable (approximately zero)

SUPPLEMENTAL FIGURE 1. (A) Radioligand saturation binding study with [$\left.{ }^{125}\right]$ KXX1 revealed higher $\mathrm{B}_{\text {max }}$ in IMR-05 ($2.30 \pm 0.07 \times 10^{6}$ targets/cell) than NLF ($1.41 \pm 0.07 \times 10^{6}$ targets/cell) but similar $\mathrm{K}_{\mathrm{d}}(5.8 \pm 0.5 \mathrm{nM}$ in IMR-05; $5.1 \pm 0.8 \mathrm{nM}$ in NLF). (B) Comparison of target binding affinity between [$\left.{ }^{125 I}\right] \mathrm{KX} 1$ and $\left[{ }^{[11} \mathrm{At}\right] \mathrm{MM} 4$ under non-saturating conditions yielded similar K_{d} of [$\left.{ }^{211} \mathrm{At}\right] \mathrm{MM} 4$ in IMR-05 ($4.3 \pm 0.5 \mathrm{nM}$) and NLF ($4.5 \pm 0.9 \mathrm{nM}$). (C) Direct measurement of cellular [${ }^{125}$] MMIBG uptake at cytotoxic concentrations showed 3.29 ± 0.07 times greater uptake in NLF compared to IMR-05. (D) IMR-05 and NLF cell lines demonstrated exponential growth pattern with doubling times of 16.2 ± 0.1 hours and 25.5 ± 0.5 hours, respectively. (E) Bright field and fluorescence microscopy with DAPI staining allowed measurements of nuclear and cellular radii in IMR-05 (6 $\mu \mathrm{m}$ and $8 \mu \mathrm{~m}$) and NLF ($9 \mu \mathrm{~m}$ and $12 \mu \mathrm{~m}$) cells.

SUPPLEMENTAL FIGURE 2. Three-dimensional structure of PARP1 (purple) bound to DNA (yellow). The distance from the PARP1 active site (green) to DNA was measured at $50.0 \AA$ (dotted line) (16-18).

SUPPLEMENTAL EQUATION 1. Calculation of the binding affinity $\left(\mathrm{K}_{\mathrm{d}}\right)$ of $\left[{ }^{221} \mathrm{At}\right] \mathrm{MM} 4$ under non-saturating conditions

When [Ligand] $\ll K_{d}$ (less than 1\%),

$$
(\text { Specific binding })=\frac{B_{\max }[\text { Ligand }]}{K_{d}+[\text { Ligand }]} \approx \frac{B_{\max }[\text { Ligand }]}{K_{d}}
$$

Then, solving for $\mathrm{B}_{\text {max }}$ yields

$$
B_{\max }=\frac{(\text { Specific binding })\left(K_{d}\right)}{[\text { Ligand }]}=\alpha \cdot K_{d}
$$

where α is the slope of the specific binding vs. [Ligand] plot.
Since $B_{\max }$ is shared between [$\left.{ }^{125} \mathrm{I}\right] \mathrm{KX} 1$ and $\left[{ }^{211} \mathrm{At}\right] M M 4$,

$$
\alpha_{(M M 4)} \cdot K_{d(M M 4)}=\alpha_{(K X 1)} \cdot K_{d(K X 1)}
$$

Therefore, solving for $\mathrm{Kd}_{\mathrm{d}(\mathrm{MM} 4)}$ yields

$$
K_{d(M M 4)}=\frac{\alpha_{(K X 1)} \cdot K_{d(K X 1)}}{\alpha_{(M M 4)}}
$$

SUPPLEMENTAL EQUATION 2. Calculation of cumulated activity
Let
$B=$ number of bound molecules per cell at equilibrium
$\mathrm{A}_{\mathrm{s}}=$ specific activity ($\mathrm{Bq} / \mathrm{moles}$)
$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number
$\mathrm{t}_{1 / 2}=$ physical half-life
$\mathrm{T}=$ duration of treatment
$\mathrm{t}=$ time
Then, the activity of bound molecules in the cell can be represented as a function of time:

$$
A(t)=\frac{B}{N_{A}} \cdot A_{s} \cdot e^{-\lambda t}
$$

where $\lambda=\ln (2) / t_{1 / 2}$.
Then, the cumulated activity Ã can be obtained by integrating $A(t)$ over the duration of treatment:

$$
\tilde{\mathrm{A}}=\int_{0}^{T} A(t) d t=\int_{0}^{T} \frac{B}{N_{A}} \cdot A_{s} \cdot e^{-\lambda t} d t=\frac{B}{N_{A}} \cdot A_{s} \cdot\left(\frac{1-e^{-\lambda T}}{\lambda}\right)
$$

