

Supplemental Figure 1. TCP predictions (black curves) from the cell survival model fit compared to observed response proportions (green squares) by dose quartiles. EUD metrics correspond to the α and N that gave the best fit (Supplemental Table 7). The blue asterisk indicates the observed binary response for each lesion. The red shaded region shows the 95% CI for the model and the green lines indicate the 95% score-based CIs for the observations. Comparison with Fig. 3 of the main text demonstrate the superior performance of the logit model compared with this model.

Supplemental Table 1. Patient/lesion characteristics of the entire cohort and sub-cohort with mRECIST response.

	Total cohort	Sub-cohort with mRECIST response
Disease		•
Primary	9 (41%) ^a	7 (58%) ^b
Liver Metastasis	13 (59%)°	7 (58%) ^b 5 (42%) ^d
Total Patients	22	12
Total Therapies	28	14
Number of lesions		
Primary	31 (35%)	21 (50%)
Liver Metastasis		21 (50%)
Total Lesions	89	42
Cirrhotic livers	7 (32%) ^e	6 (50%) ^e
	Median [range]	
Administered activity (GBq)		
Hepatocellular carcinoma	2.5 [0.5 to 4.4]	1.9 [0.5 to 2.9]
Cholangiocarcinoma	3.2 [2.1 to 4.4]	4.4
Liver Metastasis	2.9 [0.6 to 5.8]	3.1 [0.7 to 3.9]
Specific activity of microspheres at	866 [144 to 1456]	887 [182 to 1191]
administration (Bq/sphere)		
Lesion volume (mL)		
Hepatocellular carcinoma	11.7 [2.3 to 57.7]	5.5 [2.3 to 53.6]
Cholangiocarcinoma	8.7 [4.0 to 130.8]	7.4 [4.0 to 130.8]
Liver Metastasis	9.3 [2.2 to 827.8]	8.1 [2.2 to 827.8]
Number of lesions per patient	3 [1 to 5]	3 [1 to 5]
Elapsed time between microsphere	153, [44 to 230]	138 [44 to 191]
administration and ⁹⁰ Y PET/CT (min)		
Elapsed time between 90Y	11 [5 to 23]	13 [6 to 23]
treatment and first follow-up (weeks)		

^aIncludes hepatocellular carcinoma (7), cholangiocarcinoma (2)

^bIncludes hepatocellular carcinoma (6), cholangiocarcinoma (1)

^cIncludes neuroendocrine(5), colorectal(2), colon (2), pheochromocytoma (1), anal(1) and adrenal(2) disease.

^dIncludes neuroendocrine (3), pheochromocytoma (1), and adrenal (1) disease.

^eAll cases correspond to hepatocellular carcinoma

Supplemental Table 2. Summary of dose metrics and dose – shrinkage model R^2 values (with 95% CI) for the full dataset and the subset of lesions with mRECIST assessment. The ADxx, BEDxx and Vxx values presented are those that provided the best shrinkage model fit.

		All lesions (N=89)	Subset of lesions with mRECIST (N=42)					
Metric	Median, Mean [Min,Max]	Dose - shrinkage model R ² (95% Cl)	p- value*	Response	Median, Mean [Min,Max]	Dose - shrinkage model R² (95% CI)	p- value*	
AD (Gy)	268, 359 [1, 1271]	RECIST: 0.074 (0.010, 0.194)	0.007	RECIST	270, 398 [2, 1271]	0.338 (0.137, 0.572)	0.0001	
				mRECIST	270, 398 [2, 1271]	0.423 (0.163, 0.622)	<0.0001	
BED (Gy)	404, 663 [1, 4337]	RECIST: 0.043 (0.005, 0.100)	0.038	RECIST	438, 763 [2, 4337]	0.257 (0.064, 0.408)	0.001	
				mRECIST	438, 763 [2, 4337]	0.334 (0.135, 0.584)	0.0001	
ADxx (Gy)	449, 573 [2, 2727]	RECIST: 0.089 (0.017, 0.204) (AD10)	0.005	RECIST	439, 550 [3, 1835]	0.335 (0.139, 0.544) (AD20)	0.0001	
				mRECIST	38, 475 [2, 1535]	0.409 (0.163, 0.612) (AD30)	<0.0001	
BEDxx (Gy)	140, 251 [0, 1334]	RECIST: 0.021 (0.0002, 0.087) (BED90)	0.106	RECIST	145, 248 [1, 894]	0.174 (0.002, 0.419) (BED90)	0.007	
				mRECIST	354, 602 [2, 2085]	0.392 (0.059, 0.610) (BED50)	<0.0001	
Vxx (AD) (%)	63, 60 [0, 100]	RECIST: 0.115 (0.016, 0.272) (V200)	0.0003	RECIST	18, 35 [0, 99]	0.273 (0.076, 0.532) (V450)	0.001	
				mRECIST	14, 31 [0, 98]	0.414 (0.063, 0.606) (V500)	<0.0001	
Vxx(BED) (%)	75, 67 [0, 100]	RECIST: 0.124 (0.013, 0.280) (V200)	0.0002	RECIST	37, 45 [0, 100]	0.248 (0.054, 0.486) (V500)	0.002	
				mRECIST	37, 45 [0, 100]	0.403 (0.108, 0.582) (V500)	<0.0001	

*p-value of dose metric from linear mixed model of shrinkage.

Supplemental Table 3. Dose-shrinkage (mRECIST) models for primary and metastatic lesions with AD metrics as covariates. Results for RECIST are not shown, but similar to mRECIST the slopes and intercepts of the models for the 2 groups were not significantly different. Coefficients for each group come from fully interacted linear models of the form:

$$Shrinkage_{ij} = \beta_{0g} + b_{0g} + \beta_{1g} * Dose_{ij} + b_{1g} * Dose_{ij} + \epsilon_{ij}, i = 1, \dots, n, j = 1, \dots, n_i, g$$

= 1,2

Where $\beta_{0g} = \begin{cases} \beta_{01}, & \text{if metastatic lesion} \\ \beta_{02}, & \text{if primary lesion} \end{cases}$ and $\beta_{1g} = \begin{cases} \beta_{11}, & \text{if metastatic lesion} \\ \beta_{12}, & \text{if primary lesion} \end{cases}$ and $b_{0g} = \text{random intercept and } b_{1g} = \text{random slope. So, there is a different slope and}$ intercept depending on whether lesion is primary or metastatic.

Dose Metric	Group	Coefficient	Estimate (SE)	p-value for dose - shrinkage	p-value for whether intercepts differ	p-value for whether slopes differ
EUD, α=0.0002	Primary	Intercept	8.080 (13.714)	0.567	0.960	0.726
		Slope	0.073 (0.034)	0.043		
	Mets	Intercept	8.938 (9.422)	0.362		
		Slope	0.087 (0.017)	<0.0001		
		·				
V500	Primary	Intercept	18.549 (9.426)	0.073	0.763	0.131
	-	Slope	0.518 (0.209)	0.020		
	Mets	Intercept	14.293 (10.113)	0.183		
		Slope	0.967 (0.197)	<0.0001		
DOSE30	Primary Mets	Intercept	6.764 (14.291)	0.645	0.822	0.994
		Slope	0.066 (0.031)	0.044		
		Intercept	10.805 (10.263)	0.313		
		Slope	0.066 (0.014)	<0.0001		
			·			
Mean Dose	Primary	Intercept	7.975 (13.703)	0.571	0.900	0.822
		Slope	0.073 (0.034)	0.042		
	Mets	Intercept	10.115 (9.454)	0.306		
		Slope	0.082 (0.016)	< 0.0001		

Supplemental Table 4. Dose-shrinkage (mRECIST) models for primary and metastatic lesions with BED metrics as covariates. Results for RECIST are not shown, but similar to mRECIST the slopes and intercepts of the models for the 2 groups were not significantly different.

Dose Metric	Group	Coefficient	Estimate (SE)	p-value for dose - shrinkage	p-value for whether intercepts differ	p-value for whether slopes differ
EUBED,	Primary	Intercept	10.416 (12.317)	0.414	0.982	0.796
α=0.0005		Slope	0.043 (0.019)	0.033		
	Mets	Intercept	10.789 (9.746)	0.290		
		Slope	0.049 (0.010)	<0.0001		
			·			
V500	Primary	Intercept	13.871 (10.635)	0.217	0.692	0.152
		Slope	0.450 (0.179)	0.018		
	Mets	Intercept	7.726 (10.771)	0.487		
		Slope	0.814 (0.171)	<0.0001		
	-		• • •			
BED50	Primary	Intercept	12.222 (12.056)	0.331	0.799	0.856
		Slope	0.041 (0.019)	0.040		
	Mets	Intercept	16.367 (10.355)	0.140		
		Slope	0.045 (0.011)	0.0003		
	-				-	
Mean BED	Primary	Intercept	9.963 (12.094)	0.426	0.278	0.260
	-	Slope	0.043 (0.018)	0.026]	
	Mets	Intercept	27.473 (9.559)	0.014		
		Slope	0.021 (0.006)	0.002		

Supplemental Table 5. Mean AD and BED metrics for (mRECIST) responding vs. nonresponding lesions. The ADxx, BEDxx and Vxx values presented are those that provided the best shrinkage model fit.

Dose Metric	Mean (SD) for Responding lesionsMean (SD) for Nonresponding lesions[Min, Max][Min, Max]		p-value
AD (Gy)	559 (291) [90, 1271]	183 (136) [2, 574]	<0.0001
V500 (AD) (%)	50 (31) [0, 98]	6 (17) [0, 72]	<0.0001
DOSE30 (Gy)	665 (341) [98, 1535]	221 (159) [2, 638]	<0.0001
BED (Gy)	1129 (946) [102, 4337]	255 (210) [2, 809]	<0.0001
V500 (BED) (%)	68 (32) [0, 100]	15 (25) [0, 94]	<0.0001
BED50 (Gy)	888 (500) [95, 2085]	221 (209) [2, 793]	<0.0001

Supplemental Table 6. AUC and log likelihood for logit function fits to EUD and EUBED for a range of α values. Step size was made finer around the optimal α value.

	EU	ID	EUE	BED	
α	AUC	-2logL	AUC	-2logL	
0.0001	0.8819	394.2	0.9028	397.8	
0.0002	0.8796	394.1	0.9028	396.8	
0.0005	0.8773	394.2	0.9028	396.2	
0.0008	0.8727	394.4	0.9051	396.6	
0.001	0.8727	394.5	0.9028	396.9	
0.002	0.8727	395.5	0.8843	398.6	
0.005	0.8495	397.8	0.8588	401.5	
0.008	0.8403	399.3	0.8449	402.8	
0.01	0.8333	400.1	0.8356	403.4	
0.1	0.787	403.6	0.7894	405	

Supplemental Table 7. Cell survival TCP model fit AUC and log likelihood for a range of α values (at optimal N). TCP for each lesion *j* in *k* th patient was expressed as: $TCP_{jk} = e^{-N*exp(-\alpha*EUBED_{jk})}$ with N identified as the number of partially controlled tumor subvolumes. Note that this N is not the clonogen cell number as in the basic Poisson model, because the end point used in the current study is short-duration partial control and not cure. Optimal values of α and N were estimated using profile likelihood methods as described in the text for the logit model. Comparison of the results below with results of Table 1 of the main text show that in terms of AUC, the logit model performed better.

	EUD			EUBED		
α	N	AUC	-2logL	Ν	AUC	-2logL
0.0001	1	0.841	67.114	1	0.861	65.208
0.001	1	0.839	56.705	1	0.868	52.6
0.002	1	0.839	53.638	2	0.851	47.411
0.005	3	0.817	47.472	3	0.824	48.486
0.008	4	0.806	50.148	5	0.808	55.62
0.01	5	0.803	53.809	6	0.799	61.554
0.03	20	0.775	104.232	23	0.768	124.875
0.06	58	0.761	185.031	64	0.761	220.028
0.1	134	0.75	292.422			

*For EUBED with α = 0.1 model failed to converge and no estimate was identified