General.¹³¹I-NaI was purchased from PerkinElmer, Inc. (MA, USA). Astatine-211 (²¹¹At) for radiolabeling was produced in house. IITM (4-iodo-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3thiazol-2-yl]-N-methylbenzamide), its stannyl precursor (N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methyl-4-(tributylstannyl)benzamide) for radiolabeling, and FITM (4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide) were synthesized according to the methods previously reported by our laboratory. All chemicals were purchased from FUJIFILM Wako Pure Chemical Industries (Osaka, Japan) and Tokyo Chemical Industry (Tokyo, Japan). LiChrospher high-performance thin layer chromatography plates were purchased from Merck (Darmstadt, Germany). Radio-high-performance layer chromatography analysis was performed using a JASCO HPLC system (JASCO, Tokyo, Japan). Effluent radioactivity was measured using a NaI (TI) scintillation detector system (Universal Giken, Odawara, Japan). Radiothin layer chromatography analysis was performed using a Marita Raytest system (Raytest Isotopenmessgeraete, Straubenhardt, Germany). Unless otherwise stated, an IGC-7 Curiemeter dose calibrator (Aloka, Tokyo, Japan) was used for radioactivity measurements.

Radiosynthesis

Xie et al.

4-¹³¹I-iodo-N-[4-(6-(isopropylamino)pyridine-4-yl)-1,3-thiazol-2-yl]-N-methylbenz

amide (¹³¹I-IITM). A solution of stannyl precursor (100 µL, 1 mg/mL in ethanol) and acetic acid (20 μL) was added to ¹³¹I-NaI (5 μL, 370 MBq in 0.1 mol/mL NaOH; molar activity: 260 GBq/μmol). Radiolabeling was initiated by adding 30% hydrogen peroxide (20 μ L). The reaction mixture was stirred at room temperature for 2 h and an aqueous solution of Na₂S₂O₅ (500 μ L, 1 mg/mL) was added to quench the reaction mixture. This mixture was separated by reverse-phase highperformance liquid chromatography using a CAPCELL PAK UG80 column (4.6 mm i.d. × 250 mm, 5 µm; Shiseido, Tokyo) at a flow rate of 1 mL/min with a mobile phase of 60% acetonitrile in water with 0.1% triethylamine. The radioactive fraction corresponding to ¹³¹I-IITM (retention time: 12 min) was collected in a vial containing 25% ascorbic acid (100 μ L), evaporated to dryness under a stream of N_2 gas, re-dissolved in a solution of saline-polysorbate 80%-25% ascorbic acid (500 μ L; 400/10/90, v/v/v). ¹³¹I-IITM of 71–205 MBg, as an animal-injectable solution, was obtained with a 42.7% \pm 10.4% radiochemical yield (n = 9) based on the total ¹³¹I-NaI. The radiochemical purity of ¹³¹I-IITM was analyzed by reverse-phase HPLC using a CAPCELL PAK UG80 column (4.6 mm

i.d. × 250 mm, 5 µm) at a flow rate of 1 mL/min with a mobile phase of 60% acetonitrile in water with 0.1% triethylamine. The radiochemical purity was >99% (n = 9) (Supplemental Fig. 1).

4-211At-astato-N-[4-(6-(isopropylamino)pyridine-4-yl)-1,3-thiazol-2-yl]-N-methylb

enzamide (²¹¹At-AITM). An ²¹¹At/chloroform solution (37–296 MBq) was concentrated to dryness under a stream of N₂ gas, followed by the addition of N-chlorosuccinimide (100 μ L, 4 mg/mL, 2% acetic acid/methanol) and stannyl precursor (100 μ L, 1 mg/mL in methanol) to the vessel. The reaction mixture was stirred at room temperature for 10 min. An aqueous solution of $Na_2S_2O_5$ (500 μ L, 1 mg/mL) was added to quench the reaction mixture. The reaction mixture was separated by reverse-phase HPLC using a CAPCELL PAK UG80 column (4.6 mm i.d. \times 250 mm, 5 μ m) at a flow rate of 1 mL/min with a gradient mobile phase of 50% acetonitrile in water with 0.1% triethylamine to 100% acetonitrile with 0.1% triethylamine for 20 min. The radioactive fraction corresponding to ²¹¹At-AITM (retention time: 14 min) was collected in a vial containing 25% ascorbic acid (100 µL), evaporated to dryness under a stream of N₂ gas, re-dissolved in a solution of saline-polysorbate 80%–25% ascorbic acid (500 µL; 400:10:90, v/v/v). ²¹¹At-AITM of 36–118 MBq, as an animal-injectable solution, was obtained with a 45.7% \pm 6.5% radiochemical yield (n =

Xie et al.

20) based on ²¹¹At at the designated time point. The radiochemical purity of ²¹¹At-AITM was analyzed by reverse-phase HPLC using a CAPCELL PAK UG80 column (4.6 mm i.d. × 250 mm, 5 μ m) at a flow rate of 1 mL/min with a mobile phase of acetonitrile in water with 0.1% triethylamine. The radiochemical purity was >99% (*n* = 20) (Supplemental Fig. 2).

Cellular distribution of ²¹¹At-AITM. B16F10 melanoma cells (5×10^4 cells) were seeded in 24well plates and allowed to form an adherent culture overnight. The cells were incubated for 1, 2, and 6 h with 25 kBq/mL ²¹¹At-AITM. At the indicated times, the medium was removed and cells were washed twice with phosphate-buffered saline. To obtain the membrane-bound radioactivity, cells were incubated with 0.05 mol/L glycine (pH 2.8) for 5 min at 4°C. Thereafter, the cells were washed twice with phosphate-buffered saline, after which they were lysed and collected as the internalized radioactivity. Radioactivity was measured using a γ -counter (PerkinElmer, Waltham, MA, USA). The distribution ratio was calculated as a percentage of the total cellular radioactivity.

Supplemental Figure 1. Analytic HPLC chromatogram of ¹³¹I-IITM

Supplemental Figure 2. Analytic HPLC chromatogram of ²¹¹At-AITM

Supplemental Figure 3. Binding ability of ¹³¹I-IITM to mGluR1-expressing B16F10 melanoma. A dose-dependent increase in radioactivity was observed in mGluR1-expressing melanomas.

Supplemental Figure 4. Distribution ratio of ²¹¹At-AITM in B16F10 cells in vitro.

Supplemental Table 1. *Ex vivo* biodistribution data of ¹³¹I-IITM at 1 h, 2 h, 6 h, 24 h, 3 d and 7 d after radioinjection in C57BL/6J mice bearing B16F10 melanomas.

Data are expressed as mean percentage of the injected radioactivity dose per gram tissue (% ID/g) \pm SD, except the thyroid values which are presented as a percentage of the injected radioactivity dose (%ID) (n = 4 mice/group). S. Intestine, Small Intestine; L. Intestine, Large Intestine.

Organ	¹³¹ I-IITM					
	1h	2h	6h	24h	3 d	7d
Blood	1.49 ± 0.11	$\textbf{0.44} \pm \textbf{0.04}$	$\textbf{0.03} \pm \textbf{0.01}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Tumor	$\textbf{4.66} \pm \textbf{0.70}$	$\textbf{3.70} \pm \textbf{0.70}$	$\textbf{2.60} \pm \textbf{0.66}$	$\boldsymbol{1.05\pm0.14}$	$\textbf{0.24} \pm \textbf{0.11}$	$\textbf{0.03} \pm \textbf{0.02}$
Heart	$\boldsymbol{0.72\pm0.08}$	$\textbf{0.22} \pm \textbf{0.02}$	$\textbf{0.02} \pm \textbf{0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Thymus	$\textbf{0.52} \pm \textbf{0.08}$	$\textbf{0.15} \pm \textbf{0.02}$	$\textbf{0.01}{\pm}~\textbf{0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Lung	$\boldsymbol{1.02\pm0.09}$	$\textbf{0.33} \pm \textbf{0.02}$	$\textbf{0.06} \pm \textbf{0.05}$	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$	0.00 ±0.00
Liver	$\textbf{1.78} \pm \textbf{0.10}$	$\textbf{0.60} \pm \textbf{0.05}$	$\textbf{0.13} \pm \textbf{0.03}$	$\textbf{0.05} \pm \textbf{0.01}$	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Pancreas	$\textbf{0.70} \pm \textbf{0.12}$	$\textbf{0.19} \pm \textbf{0.02}$	$\textbf{0.03} \pm \textbf{0.02}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Spleen	$\textbf{0.46} \pm \textbf{0.08}$	$\textbf{0.15} \pm \textbf{0.01}$	$\textbf{0.01} \pm \textbf{0.00}$	$\textbf{0.04} \pm \textbf{0.07}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Kidney	$\textbf{2.44} \pm \textbf{0.27}$	$\textbf{0.76} \pm \textbf{0.05}$	$\textbf{0.10} \pm \textbf{0.02}$	$\textbf{0.03} \pm \textbf{0.00}$	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Stomach	5.36 ± 2.36	$\textbf{1.35} \pm \textbf{0.48}$	$\textbf{3.21} \pm \textbf{0.75}$	$\textbf{0.04} \pm \textbf{0.02}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
S.Intestine	6.70 ± 3.26	$\textbf{1.84} \pm \textbf{0.52}$	$\textbf{0.57} \pm \textbf{0.27}$	$\boldsymbol{0.02\pm0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
L.Intestine	$\textbf{2.08} \pm \textbf{0.55}$	13.12 ± 7.56	$\textbf{4.24} \pm \textbf{0.93}$	0.11 ± 0.02	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Muscle	$\boldsymbol{0.80 \pm 0.50}$	$\textbf{0.17} \pm \textbf{0.03}$	$\textbf{0.01} \pm \textbf{0.01}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Bone	$\boldsymbol{0.92 \pm 1.03}$	$\textbf{0.10} \pm \textbf{0.01}$	$\textbf{0.01} \pm \textbf{0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Testis	$\textbf{0.63} \pm \textbf{0.10}$	$\textbf{0.21} \pm \textbf{0.06}$	$\textbf{0.02} \pm \textbf{0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Bladder	14.70 ± 8.31	1.87 ± 1.37	0.23 ± 0.21	$\boldsymbol{0.01 \pm 0.00}$	0.01 ± 0.01	0.00 ±0.00
Brain	$\textbf{0.64} \pm \textbf{0.04}$	$\textbf{0.23} \pm \textbf{0.03}$	$\textbf{0.02} \pm \textbf{0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$	$\boldsymbol{0.00 \pm 0.00}$
Thyroid	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.01 \pm 0.00}$	$\boldsymbol{0.01 \pm 0.00}$

Organ	²¹¹ At-AITM					
Organ	1h	бh	24h			
Blood	4.37 ± 0.17	2.44 ± 0.16	1.01 ± 0.51			
Tumor	7.68 ± 0.71	5.71 ± 0.73	2.32 ± 0.99			
Heart	5.34 ± 0.60	3.37 ± 0.26	0.76 ± 0.24			
Thymus	4.02 ± 0.23	1.30 ± 0.25	0.99 ± 0.48			
Lung	11.98 ± 0.99	10.85 ± 1.82	2.80 ± 1.04			
Liver	4.83 ± 1.02	1.60 ± 0.17	0.91 ± 0.30			
Pancreas	3.03 ± 0.28	1.72 ± 0.22	0.61 ± 0.28			
Spleen	6.53 ± 2.49	5.95 ± 0.44	1.35 ± 0.31			
Kidney	7.08 ± 0.77	3.63 ± 0.17	1.74 ± 0.75			
Stomach	20.29 ± 2.53	26.39 ± 1.32	21.14 ± 15.82			
S.Intestine	5.30 ± 0.56	2.12 ± 0.35	3.26 ± 3.70			
L.Intestine	2.02 ± 0.12	2.40 ± 0.76	3.70 ± 1.79			
Muscle	1.33 ± 0.18	0.57 ± 0.07	0.28 ± 0.09			
Bone	2.05 ± 0.09	1.60 ± 0.23	0.51 ± 0.17			
Testis	4.36 ± 0.47	3.50 ± 0.40	1.59 ± 0.64			
Bladder	8.35 ± 2.21	13.32 ± 7.46	4.98 ± 2.94			
Brain	1.10 ± 0.06	0.39 ± 0.04	0.12 ± 0.05			
Thyroid	0.12 ± 0.07	0.07 ± 0.06	0.24 ± 0.08			

Supplemental Table 2. *Ex vivo* biodistribution data of ²¹¹At-AITM at 1 h, 6 h and 24 h after radioinjection in C57BL/6J mice bearing B16F10 melanomas.

Data are expressed as mean percentage of the injected radioactivity dose per gram tissue (% ID/g) \pm SD, except the thyroid values which are presented as a percentage of the injected radioactivity dose (% ID) (n = 4 mice/group). S. Intestine: Small Intestine; L. Intestine: Large Intestine.