Chemistry

i) DCC, tBuOH, CuCl; ii) HO(CH₂)₃NHMe, Pd₂(dba)₃, BINAP, Cs₂CO₃; iii) 1) MsCl, NEt₃; 2) 1-Boc-piperazine, KI; iv) 1) TFA/TfOH; 2) Boc₂O, NEt₃.

tert-butyl 6-bromoquinoline-4-carboxylate

98.3 mg (390 μmol) 6-bromoquinolie-4-carboxylic acid (raw) were suspended in 5 mL tetrahydrofuran and 25.0 μL (18.3 mg; 181 μmol) triethylamine and added to *O*-tert-butyl-*N*,*N*'-dicyclohexylisourea (prepared the day before from neat 426 mg (2.07 mmol) dicyclohexylcarbodiimide, 173 mg (2.33 mmol) tert-butanol and 10.2 mg (103 μmol) copper(I)iodide). The mixture was heated to 50 °C over night. The mixture was filtered, solvents evaporated and the product isolated by HPLC. 49.7 mg (161 μmol; 41%) of the title compound were obtained after freeze drying.

LC-MS Rt 20.40 min, m/z 251.9642 [M-tBu]⁺

tert-butyl 6-(4-chlorobutyl)quinoline-4-carboxylate

6.12 mg (19.9 μ mol) *tert*-butyl 6-bromoquinoline-4-carboxylate, 1.81 mg (1.98 μ mol) Pd₂(dba)₃ and 1.85 mg (4.50 μ mol) S-Phos were dissolved in 1 mL dry tetrahydrofurane under an inert atmosphere. 200 μ L (100 μ mol) of a 0.5 M 4-chlorobutyl-1-zinc bromide solution in tetrahydrofurane were added and the reaction was stirred over night. The reaction was quenched with 500 μ L of saturated ammonium chloride solution, both phases evaporated and taken up in water acetonitrile 1:1. The mixture was filtered by an oasiss C18 light column before HPLC. 5.82 mg (18.2 μ mol; 91%) were obtained after freeze drying.

LC-MS R_t 18.83 min, m/z 320.1393 [M+H]⁺

OtBu

tert-butyl 6-(3-hydroxypropylamino)quinoline-4-carboxylate

6.14 mg (19.9 μ mol) *tert*-butyl 6-bromoquinoline-4-carboxylate, 2.56 mg (4.11 μ mol) BINAP, 1.61 mg (1.76 μ mol) Pd₂(dba)₃ and 37.0 (113 μ mol) cesium carbonate were dissolved in 1 mL toluene and 5.00 μ L (4.95 mg; 65.9 μ mol) 1,3-propanolamine were added. The mixture was stirred at 90 °C over night before solvents were removed, the residue suspended in water/acetonitrile 1:1 and filtered before HPLC-purification. 4.41 mg (14.6 μ mol; 73%) of the title compound were obtained after freeze drying.

LC-MS Rt 12.95 min, m/z 303.1685 [M+H]+

tert-butyl 6-(3-hydroxypropylmethylamino)quinoline-4-carboxylate

99.14 mg (322 μ mol) *tert*-butyl 6-bromoquinoline-4-carboxylate, 12.26 mg (19.7 μ mol) BINAP, 7.46 mg (8.14 μ mol) Pd₂(dba)₃ and 212.85 mg (653 μ mol) cesium carbonate were dissolved in 3 mL toluene and 64.0 μ L (58.9 mg; 660 μ mol) *N*-methyl-1,3-propanolamine were added. The mixture was stirred at 90 °C over night before solvents were removed, the residue suspended in water/acetonitrile 1:1 and filtered before HPLC-purification. 62.8 mg (199 μ mol; 62%) of the title compound were obtained after freeze drying.

LC-MS Rt 13.41 min, m/z 261.1213 [M-tBu+H]+

tert-butyl 6-(3-(1-Boc-piperidin-4-yl)propyl-1-(methyl)amino)quinoline-4-carboxylate

3.12 mg (6.45 μ mol; 29%) were obtained following the previous method.

LC-MS R_t 19.04 min, m/z 484.3124 [M+H]⁺

6-(4-(4-tert-butoxypiperazin-1-yl)butyl)quinoline-4-carboxylic acid

4.75 mg (14.8 μ mol) *tert*-butyl 6-(4-chlorobutyl)quinoline-4-carboxylate were dissolved in 200 μ L trifluoroacetic acid (with 2.5% water) and shaken for 180 minutes. 1 mL dichloromethane was added and the solvents removed in vacuo, which was repeated three times. 500 μ L dimethylformamide, 35.2 mg (108 μ mol) cesium carbonate, 52.41 mg (282 μ mol) 1-Boc-piperazine and 7.22 mg (43.5 μ mol) potassium iodide were added to the residue. The mixture was shaken at 60 °C over night and purified by HPLC. 3.02 mg (7.29 μ mol; 49%) were obtained after freeze drying.

LC-MS R_t 10.78 min, m/z 414.2364 [M+H]⁺

tert-butyl 6-(3-4-tert-butoxycarbonylpiperazin-1-ylpropyl-1-thio)quinoline-4-carboxylate

6.35 mg (20.6 μ mol) *tert*-butyl 6-bromoquinoline-4-carboxylate, 2.95 mg (4.74 μ mol) BINAP, 1.49 mg (1.53 μ mol) Pd₂(dba)₃ and 36.1 (111 μ mol) cesium carbonate were dissolved in 2 mL toluene and 14.78 mg (48.9 μ mol) 3-(4-Boc-piperazin-1-yl)-1-(acetylthio)propane were added. The mixture was stirred at 90 °C over night before solvents were removed, the residue suspended in water/acetonitrile 1:1 and filtered before HPLC-purification. 7.82 mg (16.0 μ mol; 78%) of the title compound were obtained after freeze drying.

LC-MS Rt 15.96 min, m/z 488.2550 [M+H]*

tert-butyl 6-(3-(4-Boc-piperazin-1-yl)propyl-1-amino)quinoline-4-carboxylate

2.39 mg (7.91 μ mol) *tert*-butyl 6-(3-hydroxypropylamino)quinoline-4-carboxylate were dissolved in 1 mL dichloromethane and 5.5 μ L (4.02 mg; 39.8 μ mol) DIPEA. 1.00 μ L (1.48 mg; 12.9 μ mol) methanesulfonyl chloride were added and the mixture shaken for 60 min. 53.42 mg (28.7 μ mol) 1-Boc-piperazine were added before volatiles were removed. 500 μ L dimethylformamide and 19.22 mg (116 μ mol) potassium iodide were added to the residue. The mixture was shaken at 60 °C for 120 minutes before the product was isolated by HPLC. 3.34 mg (7.09 μ mol; 90%) of the title compound were obtained after freeze drying.

LC-MS Rt 13.54 min, m/z 471.2942 [M+H]⁺

tert-butyl 6-(3-(4-Boc-piperazin-1-yl)propyl-1-(methyl)amino)quinoline-4-carboxylate

62.8 mg (199 μ mol) *tert*-butyl 6-(3-hydroxypropylmethylamino)quinoline-4-carboxylate were dissolved in 5 mL dichloromethane and 90.0 μ L (66.6 mg; 659 μ mol) triethylamine. 20.0 μ L (29.6 mg; 258 μ mol) methanesulfonyl chloride were added at 0 °C and the mixture reacted for 60 min. 194.6 mg (1.05 mmol) 1-Boc-piperazine were added before volatiles were removed. 500 μ L dimethylformamide and 47.4 mg (286 μ mol) potassium iodide were added to the residue. The mixture was shaken at 60 °C for 120 minutes before the product was isolated by HPLC. 81.05 mg (167 μ mol; 84%) of the title compound were obtained after freeze drying.

LC-MS Rt 13.99 min, m/z 485.3086 [M+H]⁺

tert-butyl 6-(3-((15,45)-5-Boc-2,5-diazabicyclo[2.2.1]heptan-2-yl)propyl-1-(methyl)amino)quinoline-4-carboxylate

4.05 mg (8.15 μ mol; 64%) were obtained following the previous protocol, while the reaction with (1*S*,4*S*)-2-Boc-2,5-diazabicyclo[2.2.1]heptan was carried out at 40 °C over night.

LC-MS Rt 13.79 min, m/z 497.3078 [M+H]+

6-(3-((15,45)-5-(tert-butoxycarbonyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)propoxy)quinoline-4-carboxylic acid

3.42 mg (12.9 μ mol) of 6-(3-chloro-1-propoxy)quinoline-4-carboxylic acid, 13.3 mg (66.9 μ mol) (1*S*,4*S*)-2-Boc-2,5diazabicyclo[2.2.1]heptan and 18.4 mg (111 μ mol) potassium iodide were dissolved in 250 μ L DMF. The reaction was shaken at 60 °C over night. The resulting suspension was diluted with 750 μ L water before the product was purified by HPLC. After freeze drying 6.46 mg (11.9 μ mol; 92%) of the product were obtained as the corresponding TFA-salt.

LC-MS Rt 10.66 min, m/z 450.1768 [M+Na]+

(S)-6-(3-(3-benzyl-4-(tert-butoxycarbonyl)piperazin-1-yl)propoxy)quinoline-4-carboxylic acid

10.1 mg (16.3 µmol; 85%) were obtained following the previous method.

LC-MS Rt 13.48 min, m/z 506.2388 [M+H]⁺

6-(3-(4-(tert-butoxycarbonyl)-3,3-dimethylpiperazin-1-yl)propoxy)quinoline-4-carboxylic acid

5.15 mg (9.23 μ mol; 46%) were obtained following the previous method.

LC-MS Rt 11.85 min, m/z 444.2260 [M+H]⁺

6-(3-((1*R*,4*R*)-5-(*tert*-butoxycarbonyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)propoxy)quinoline-4-carboxylic acid 2.13 mg (4.98 μmol; 93%) were obtained following the previous method.

LC-MS Rt 10.59 min, m/z 428.2147 [M+H]⁺

6-(3-(6-(tert-butoxycarbonyl)-3,6-diazabicyclo[2.2.1]heptan-2-yl)propoxy)quinoline-4-carboxylic acid

1.59 mg (3.60 µmol; 36%) were obtained following the previous method.

LC-MS Rt 10.92 min, m/z 442.2325 [M+H]⁺

6-(3-((1R,5S)-6-(tert-butoxycarbonyl)-3,6-diazabicyclo[2.2.2]nonan-2-yl)propoxy)quinoline-4-carboxylic acid

3.52 mg (7.73 µmol; 75%) were obtained following the previous method.

LC-MS Rt 11.28 min, m/z 456.2478 [M+H]⁺

6-(3-(4-(tert-butoxycarbonylaminomethyl)-1H-1,2,3-triazol-1-yl)propoxy)quinoline-4-carboxylic acid

1.09 mg (4.01 μ mol) 6-(3-azidopropoxy)quinoline-4-carboxylic acid were dissolved in 200 μ L water and 1 μ L (0.86 mg; 15.6 μ mol) propargylamine. 1 μ L saturated copper(II)acetate in water (0.36 μ mol) were added and the solution was heated to 95 °C. The mixture was cooled to room temperature before 50 μ L acetonitrile, 4.68 mg (21.5 μ mol) di-*tert*-butyl dicarbonate and 5 μ L (3.65 mg; 36.1 μ mol) triethylamine were added. The product was isolated by HPLC after 60 min. 1.05 mg (2.45 μ mol; 61%) of the title compound were obtained after freeze drying.

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 60• No. 10 • October 2019

LC-MS Rt 12.20 min, m/z 428.1907 [M+Na]+

6-(3-(4-(tris-tBuDOTA)piperazin-1-yl)propyl-1-thio)quinoline-4-carboxylic acid

4.73 mg (9.69 μ mol) *tert*-butyl 6-(3-4-*tert*-butoxycarbonylpiperazin-1-ylpropyl-1-thio)quinoline-4-carboxylate were deprotected with 200 μ L trifluoroacetic acid containing 2.5% triethylsilane and 2.5% water for 120 min. The volatiles were removed by coevaporation with dichloromethane (3×1 mL) and the residue dissolved with 100 μ L dimethylformamide and 5.50 μ L (4.07 mg; 31.6 μ mol). Meanwhile 6.89 mg (12.0 μ mol) DOTA-tris(*t*Bu)ester and 4.69 mg (12.4 μ mol) HBTU were reacted for 10 min in 150 μ L dimethylformamide before addition to the deprotected quinoline solution. Finally 10.0 μ L (7.40 mg; 57.4 μ mol) DIPEA were added and the mixture reacted for 120 min. 6.59 mg (7.44 μ mol; 77%) of the title compound were obtained after HPLC-purification and freeze-drying.

LC-MS Rt 13.00 min, m/z 908.4873 [M+Na]*

(tBu)₃DOTA

6-(3-(4-(tris-tBuDOTA)piperazin-1-yl)propyl-1-amino)quinoline-4-carboxylic acid

1.11 mg (1.28 μ mol; 26%) were obtained following the previous protocol.

LC-MS Rt 12.06 min, m/z 891.5258 [M+Na]+

6-(3-(4-Boc-piperazin-1-yl)propyl-1-(methyl)amino)quinoline-4-carboxylic acid

100.12 mg (206 μ mol) *tert*-butyl 6-(3-(4-Boc-piperazin-1-yl)propyl-1-(methyl)amino)quinoline-4-carboxylate were treated with 900 μ L trifluoroacetic acid, 25 μ L triisopropylsilane, 25 μ L water and 50 μ L trifluoromethanesulfonic acid for 60 min. The deprotected compound was precipitated with diethyl ether, dried and reacted with 60.83 mg (279 μ mol) di-*tert*-butyldicarbonate and 50.0 μ L (36.5 mg; 361 μ mol) triethylamine in 1 mL dimethylformamide for another 60 min. 55.42 mg (129 μ mol; 65% over 2 steps) were obtained after HPLC-purification and freeze-drying.

LC-MS Rt 10.52 min, m/z 429.2463 [M+H]⁺

6-(3-((15,45)-5-Boc-2,5-diazabicyclo[2.2.1]heptan-2-yl)propyl-1-(methyl)amino)quinoline-4-carboxylic acid
2.48 mg (5.62 μmol; 88%) were obtained following the previous method.

LC-MS Rt 10.52 min, m/z 441.2464 [M+H]⁺

6-(3-(1-Boc-piperidin-4-yl)propyl-1-(methyl)amino)quinoline-4-carboxylic acid

1.57 mg (3.67 $\mu mol;$ 57%) were obtained following the previous method.

LC-MS Rt 15.51 min, m/z 450.2324 [M+Na]⁺

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-((1*S*,4*S*)-5-*tert*-butoxycarbonyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)propoxy)quinoline-4-carboxamide

2.06 mg (5.44 μ mol) HBTU in 50 μ L DMF were added to a solution of 1.86 mg (4.35 μ mol) 6-(3-(4-*tert*-butoxycarbonylpiperazin-1-yl)-1-propoxy)quinoline-4-carboxylic acid, 1.65 mg (12.2 μ mol) HOBt and 2.50 μ L (1.85 mg; 12.3 μ mol) DIPEA in 50 μ L DMF. After 15 min 2.26 mg (6.26 μ mol) (*S*)-1-(2-aminoacetyl)pyrrolidine-2-carbonitrile 4-methylbenzenesulfonate in 50 μ L DMF were added. The reaction was quenched with 500 μ L water and purified by HPLC. Freeze drying provided 1.96 mg (3.27 μ mol; 75%) of the title compound.

LC-MS Rt 12.41 min, m/z 599.2476 [M+H]⁺

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(3-(*S*)-benzyl-4-*tert*-butoxycarbonylpiperazin-1-yl)propoxy)quinoline-4-carboxamide

2.54 mg (3.75 $\mu mol;$ 47%) were obtained following the previous method.

LC-MS Rt 14.83 min, m/z 677.2905 [M+H]+

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(4-(*tert*-butoxycarbonyl)-3,3-dimethylpiperazin-1-yl)propoxy)quinoline-4-carboxamide

2.33 mg (3.79 $\mu mol;$ 84%) were obtained following the previous method.

LC-MS Rt 13.65 min, m/z 637.2586 [M+Na]⁺

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-((1*R*,4*R*)-5-(*tert*-butoxycarbonyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)propoxy)quinoline-4-carboxamide

1.58 mg (2.64 μ mol; 87%) were obtained following the previous method.

LC-MS Rt 12.44 min, m/z 599.2747 [M+H]⁺

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(6-(*tert*-butoxycarbonyl)-3,6-diazabicyclo[3.2.1]octan-3-yl)propoxy)quinoline-4-carboxamide

0.57 mg (0.93 $\mu mol;$ 46%) were obtained following the previous method.

LC-MS Rt 12.59 min, m/z 613.2918 [M+H]⁺

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-((1*R*,5*S*)-6-(*tert*-butoxycarbonyl)-3,6-diazabicyclo[3.2.2]nonan-3-yl)propoxy)quinoline-4-carboxamide

1.22 mg (1.95 µmol; 41%) were obtained following the previous method.

LC-MS Rt 13.08 min, m/z 627.3075 [M+H]⁺

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(4-(*tert*-butoxycarbonylaminomethyl)-1*H*-1,2,3-triazol-1-yl)propoxy)quinoline-4-carboxamide

0.68 mg (1.14 μ mol; 78%) were obtained following the previous method.

LC-MS Rt 13.66 min, m/z 599.2506 [M+H]⁺

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(4-(4-*tert*-butoxycarbonylpiperazin-1-yl)butyl)quinoline-4-carboxamide

3.02 mg (7.29 µmol; 49%) were obtained following the previous method.

LC-MS Rt 13.18 min, m/z 585.2961 [M+H]⁺

N-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(4-Boc-piperazin-1-yl)propyl-1-thio)quinoline-4-carboxamide

4.91 mg (4.65 µmol; 81%) were obtained following the previous method.

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 60• No. 10 • October 2019

N-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(4-Boc-piperazin-1-yl)propyl-1-amino)quinoline-4-carboxamide

0.74 mg (0.71 μ mol; 79%) were obtained following the previous method.

LC-MS Rt 12.89 min, m/z 1062.5860 [M+H]⁺

N-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(4-Boc-piperazin-1-yl)propyl-1-(methyl)amino)quinoline-4-carboxamide

0.60 mg (1.0 μ mol; 37%) were obtained following the previous method.

LC-MS Rt 12.66 min, m/z 600.3057 [M+H]⁺

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(1-Boc-piperidin-4-yl)propyl-1-amino)quinoline-4-carboxamide

51.94 mg (86.6 μ mol; 82%) were obtained following the previous method.

LC-MS Rt 16.28 min, m/z 621.2915 [M+Na]*

Loktev et al.

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-((1*S*,4*S*)-5-*tert*-butoxycarbonyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)propyl-1-(methyl)amino)quinoline-4-carboxamide

1.89 mg (3.09 μ mol; 78%) were obtained following the previous method.

LC-MS R_t 12.35 min, m/z 612.3062 [M+H]⁺

(*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-(1-D-Arg(Pbf)-piperidin-4-yl)-1-propoxy)quinoline-4-carboxamide

1.11 mg (1.89 µmol) of (*S*)-*N*-(2-(2-cyanopyrrolidin-1-yl)-2-oxoethyl)-6-(3-(1-*tert*-butoxycarbonyl-piperidin-4-yl)-1propoxy)quinoline-4-carboxamide and 1.87 mg (9.79 µmol) 4-methylbenzene-sulfonic acid monohydrate were dissolved in 50 µL acetonitrile. After 60 min the volatiles removed. To the residue was dissolved in 50 µL dimethylformamide and 2.50 µL (1.85 mg; 14.3 µmol) DIPEA and added to a solution of 2.62 mg (4.04 µmol) Fmoc-D-Arg(Pbf)-OH, 0.61 mg (4.52 µmol) HOBt, 1.70 mg (4.49 µmol) HBTU and 2.50 µL (1.85 mg; 14.3 µmol) DIPEA in 50 µL dimethylformamide. After 60 min 22.2 µL (22.4 mg; 257 µmol) morpholin were added and the product was isolated by HPLC after further 90 min. 1.55 mg (1.73 µmol; 92%) of the title compound were obtained after freeze drying.

LC-MS Rt 14.38 min, m/z 447.7088 [M+2H]²⁺

FAPI-21

0.84 mg (1.41 mmol) (*S*)-*N*-(2-(2-cyano-4,4-difluoropyrrolidin-1-yl)-2-oxoethyl)-6-(3-((1*S*,4*S*)-5-Boc-2,5diazabicyclo[2.2.1]heptan-2-yl)propoxy)quinoline-4-carboxamide were dissolved in 30 μ L acetonitrile and 60 μ L trifluoroacetic acid. The reaction was shaken for 15 min before volatiles were removed and the residue precipitated by diethyl ether. after centrifugation the solid was taken up in 190 μ L dimethylformamide and 5.00 μ L (3.65 mg; 36.1 μ mol) triethylamine before 1.64 mg (3.12 μ mol) of DOTA-*p*-nitrophenol ester were added. The reaction mixture was diluted with 1 mL water and purified by HPLC after shaking for two hours. 0.84 mg (0.95 μ mol; 67%) were obtained after freeze drying.

LC-MS Rt 8.90 min, m/z 885.3605 [M+H]+

FAPI-22

0.92 mg (0.96 $\mu mol;$ 67%) were obtained following the previous protocol.

LC-MS Rt 10.18 min, m/z 985.3843 [M+Na]⁺

0.21~mg (0.23 $\mu\text{mol};$ 14%) were obtained following the previous protocol.

LC-MS Rt 9.13 min, m/z 923.3715 [M+H]⁺

FAPI-31

0.21 mg (0.24 $\mu mol;$ 14%) were obtained following the previous protocol.

LC-MS Rt 8.92 min, m/z 443.2058 [M+2H]²⁺

FAPI-35

0.26 mg (0.29 μ mol; 71%) were obtained following the previous protocol.

LC-MS Rt 9.26 min, m/z 450.2127 [M+2H]²⁺

FAPI-36

0.49 mg (0.54 μ mol; 96%) were obtained following the previous protocol.

LC-MS Rt 9.36 min, m/z 457.2205 [M+2H]²⁺

FAPI-37

0.69 mg (0.78 μ mol; quant.) were obtained following the previous protocol.

LC-MS R_t 9.66 min, m/z 443.1920 [M+2H]²⁺

FAPI-38

0.97 mg (0.94 $\mu mol;$ 78%) were obtained following the previous protocol.

LC-MS Rt 10.46 min, m/z 514.7572 [M+2H]²⁺

FAPI-39

0.91 mg (1.04 μ mol; 71%) were obtained following the previous protocol.

LC-MS R_t 9.19 min, m/z 871.4217 [M+H]⁺

FAPI-40

2.23 mg (2.51 µmol; 69%) were obtained after deprotection with 2.5% trifluorometahesulfonic acid in trifluoroacetic acid/acetonitrile 8:2 for 5 min and HPLC-purification/freeze-drying.

LC-MS Rt 9.63 min, m/z 889.3783 [M+H]*

FAPI-41

0.24 mg (0.28 µmol; 74%) were obtained after deprotection with 2.5% trifluorometahesulfonic acid in trifluoroacetic acid/acetonitrile 8:2 for 5 min and HPLC-purification/freeze-drying.

LC-MS Rt 8.56 min, m/z 436.7125 [M+2H]²⁺

FAPI-46

39.21 mg (44.3 μ mol; 85%) were obtained following the procedure for FAPI-21.

LC-MS Rt 9.03 min, m/z 443.7196 [M+2H]²⁺

FAPI-53

0.81 mg (0.91 μ mol; 41%) were obtained following the previous protocol.

LC-MS R_t 9.09 min, m/z 449.7194 [M+2H]²⁺

FAPI-55

0.27 mg (0.31 μ mol; 63%) were obtained following the previous protocol.

LC-MS Rt 10.78 min, m/z 443.2211 [M+2H]²⁺

Supplemental Fig. 1. Stability in human serum of A) FAPI-21 and B) FAPI-46.

Compound	R-	Compound	R-
FAPI-04		FAPI-37	
FAPI-20	DOTA -N N O	FAPI-38	
FAPI-21		FAPI-39	
FAPI-22		FAPI-40	
FAPI-23		FAPI-41	
FAPI-31		FAPI-46	
FAPI-35		FAPI-53	
FAPI-36	DOTA-N_N_N_OY	FAPI-55	

Supplemental Table 1. Chemical structure of the novel FAPI derivatives

In vitro results

	1 h	4 h	24 h
FAPI-04	94,44	94,80	97,09
FAPI-20	97,79	97,75	96,50
FAPI-21	98,04	97,52	97,20
FAPI-22	97,39	96,87	95,16
FAPI-23	95,64	96,45	96,61
FAPI-31	96,35	nd	86,04
FAPI-35	97,03	97,75	95,33
FAPI-36	96,82	96,71	90,13
FAPI-37	97,96	97,40	93,72
FAPI-38	94,77	94,59	63,14
FAPI-39	94,61	94,45	90,90
FAPI-40	95,31	94,92	89,38
FAPI-41	96,81	97,27	83,91
FAPI-46	97,18	97,75	92,03
FAPI-53	93,74	92,97	88,23
FAPI-55	94,60	95,29	94,88

Supplemental Table 2. Percentage of internalized fraction of selected FAPI derivatives in HT-1080-FAP cells after incubation for 1, 4 and 24 h; nd: *not determined*.

Supplemental Fig. 2. Efflux kinetics of selected FAPI derivatives after incubation of HT-1080-FAP cells with radiolabeled compound for 60 min and consequent incubation with nonradioactive medium for 1 to 4 hours.

Supplemental Fig. 3. Competitive binding of selected FAPI derivatives to HT-1080-FAP cells after adding increasing concentrations of unlabeled compound.

Small animal imaging

Supplemental Fig. 4. PET imaging of selected FAPI derivatives in HT-1080-FAP tumor bearing mice. Maximum intensity projections (MIP) 60 and 120 min after intravenous injection of ⁶⁸Ga-labeled compound (tumor indicated by the arrow); time-activity curves up to 60 min after injection.

Supplemental Fig. 5. Maximum tumor uptake of ⁶⁸Ga-labeled FAPI derivatives up to 120 min after intravenous administration, determined by small animal PET imaging.

Supplemental Fig. 6. PET imaging of FAPI-21 and -46 in HT-1080-FAP tumor bearing mice. Maximum intensity projections (MIP) 60 and 120 min after intravenous injection of ⁶⁸Ga-labeled compound (tumor indicated by the arrow) with and without simultaneous administration of unlabeled compound as competitor; n=1.

	-								
	Blood	Heart	Lung	Spleen	Liver	Kidney	Muscle	Intestine	Brain
FAPI-04	31.10	48.80	26.33	28.58	17.00	3.35	23.10	43.28	216.26
FAPI-21	29.09	46.52	27.24	26.86	14.37	6.07	21.55	58.15	282.99
FAPI-35	14.32	21.00	13.56	14.55	5.40	2.34	9.55	12.41	167.90
FAPI-46	23.19	40.33	22.66	27.24	19.05	5.40	14.76	38.54	227.41
FAPI-55	12.77	24.35	14.02	30.52	14.15	7.09	10.91	19.87	176.60

Supplemental Table 3. Tumor-to-normal tissue ratios (calculated from %ID/g values 0-24 h after intravenous administration) of ¹⁷⁷Lu-labeled FAPI derivatives in HT-1080-FAP tumor bearing mice.

	F/	API-04	FAPI-21			FAPI-46			
	max	mean	n	max	mean	n	max	mean	n
Tumor	10.07 ± 0.50	5.8 ± 0.3	25	11.93 ± 3.33	5.71 ± 0.61	3	12.76 ± 0.90	6.60 ± 0.53	4
Brain	0.10 ± 0.01	0.86 ± 0.8	25	0.07 ± 0.11	0.01 ± 0.03	4	0.02 ± 0.02	0.00 ± 0.00	4
Oral Mucosa	4.36 ± 0.19	2.50 ± 0.11	25	3.38 ± 1.20	2.39 ± 0.70	4	1.49 ± 1.10	1.29 ± 0.45	4
Parotis	1.58 ± 0.05	1.25 ± 0.04	25	3.69 ± 0.89	2.53 ± 0.33	4	1.38 ± 0.26	1.10 ± 0.34	4
Submandibularis	not determined			7.11 ± 1.24	4.09 ± 0.73	4	2.32 ± 0.75	1.57 ± 0.54	4
Thyroid	2.26 ± 0.11	1.26 ± 0.05	25	3.25 ± 0.89	2.13 ± 0.48	4	2.25 ± 0.46	1.60 ± 0.28	4
Lung	0.68 ± 0.04	0.39 ± 0.03	25	0.92 ± 0.25	0.54 ± 0.13	4	0.99 ± 0.64	0.39 ± 0.19	4
Blood	1.73 ± 0.06	1.08 ± 0.03	25	1.57 ± 0.16	1.14 ± 0.12	4	1.22 ± 0.50	1.11 ± 0.13	4
Liver	1.09 ± 0.05	0.67 ± 0.03	25	1.80 ± 0.26	1.08 ± 0.19	4	1.64 ± 0.48	0.93 ± 0.45	4
Pancreas	1.55 ± 0.08	0.96 ± 0.06	25	3.96 ± 1.34	2.22 ± 0.80	2	1.61 ± 0.55	0.99 ± 0.01	3
Spleen	1.17 ± 0.06	0.76 ± 0.04	25	2.31 ± 0.86	1.24 ± 0.14	3	1.74 ± 0.40	0.92 ± 0.10	4
Kidneys	1.86 ± 0.09	1.38 ± 0.07	25	3.98 ± 0.51	2.40 ± 0.54	4	2.81 ± 0.51	2.02 ± 0.32	4
Muscle	1.54 ± 0.06	1.06 ± 0.04	25	2.41 ± 0.23	1.58 ± 0.23	4	1.80 ± 0.44	1.12 ± 0.29	4

Supplemental Table 4. SUV max and mean values ± standard deviation 1 h after administration of ⁶⁸Ga-labeled FAPI-04, -21 and -46 to cancer patients; *n: number of patients*. The FAPI-04 data in 25 patients were taken from Giesel, F. *et al.* FAPI-PET/CT: biodistribution and preliminary dosimetry estimate of two DOTA-containing FAP-targeting agents in patients with various cancers. *Journal of nuclear medicine: official publication, Society of Nuclear Medicine*, doi:10.2967/jnumed.118.215913 (2018).