Supplemental Table 1

	Factors for non-PVC data				Factors for PVC data			
	1	2	3	Uniq	1	2	3	Uniq
Lcaud	0.659			0.184	0.899			0.150
Rcaud	0.705			0.194	0.908			0.157
Lpall	0.942			0.054	0.716			0.273
Rpall	0.915			0.078	0.689			0.308
Lput	1.021			0.022	0.989			0.050
Rput	1.054			0.013	1.024			0.031
Lthal		0.770		0.039		0.756		0.118
Rthal		0.716		0.076		0.704		0.193
HemiW		0.976		0.118		0.980		0.134
Cerew		1.008		0.110		0.979		0.094
Lchoroid			0.820	0.166			0.886	0.125
Rchoroid			0.958	0.145			0.912	0.203

Factor loadings from Exploratory Factor Analysis (EFA; Jamovi: https://www.jamovi.org/) on nonPVC and PVC data in $\mathrm{HC}_{A \beta}$ - subjects using oblimin rotation, thresholded loadings at 0.5 . The number of factors based on parallel analysis. Uniqueness (Uniq) is the proportion of common variance of the variable not associate with other factors. Left caudate (Lcaud), right caudate (Rcaud), left pallidum (Lpall), right pallidum (Rpall), left putamen (Lput), right putamen (Rput) make up the first factor. The second factor is made up of left thalamus (Lthal), right thalamus (Rthal), hemispheric white matter (HemiW), and cerebellar white matter (CereW). The third factor was made up of left choroid plexus (Lchoroid) and right choroid plexus (Rchoroid).

Supplemental Table 2

	Variance explained	ROIs in component
PCA component 1	66.9%	Choroid plexus
PCA component 2	25.5%	Caudate, pallidum, putamen
PCA component 3	3.8%	Thalamus, Hemispheric white, Cerebellar white

Components from Principle Components Analysis (PCA; Matlab R2015a:
https://www.mathworks.com). Only first 3 components are reported since remaining components contribute $<3 \%$.

Supplemental Table 3

	SUV Mean $(\mathrm{g} / \mathrm{mL})$	SUV Standard Deviation	SUV Coefficient of Variation
Inferior cerebellar gray	0.46	0.15	0.32
Caudate	0.55	0.23	0.41
Pallidum	0.76	0.32	0.42
Putamen	0.70	0.30	0.42
Thalamus	0.58	0.23	0.39
Eroded HemiW	0.55	0.20	0.36
CereW	0.52	0.19	0.36
Braak 1	0.53	0.18	0.34
Braak 2	0.57	0.21	0.38
Braak 3	0.53	0.18	0.34
Braak 4	0.53	0.18	0.34
Braak 5	0.51	0.17	0.34
Braak 6	0.48	0.16	0.33

Standard Uptake Value (SUVs; SUV=PET concentration [Bq/mL] x weight [g] / injected radiotracer [Bq])) was calculated in $\mathrm{HC}_{A \beta-}$ - subjects non-PVC data. HemiW: Hemispheric white, CereW: cerebellar white. Eroded HemiW means a binary HemiW mask was smoothed to the scanner resolution and all voxels >0.7 comprised the eroded HemiW mask.

