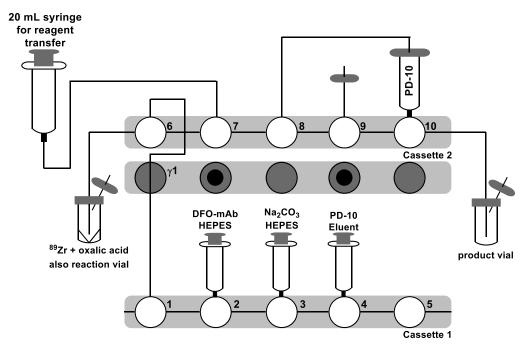

Reaction scheme of ⁸⁹Zr-mAb labeling


Scheme 1: Methods for ⁸⁹Zr-mAb labeling for clinical use to date: **(A)** Modification of a mAb with TFP-*N*-suc-Df-Fe, followed by the removal of Fe and the ⁸⁹Zr-labeling of the DFO-mAb in the final step. **(B)** Modification of a mAb with Df-Bz-NCS, followed by the ⁸⁹Zr-labeling of the DFO-mAb in the final step.

General: All reagents and solvents were purchased from Sigma Aldrich. Disposable tubing with luer locks were obtained from Vygon (Valkenswaard. The Netherlands). Disposable syringes were obtained from BD Plastipak (Franklin Lakes. USA). Cetuximab (5 mg/mL) directed against the epidermal growth factor receptor (EGFR) and rituximab (10 mg/mL) directed against CD20. were obtained from the VU University Medical Center pharmacy. In this study. TFP-N-suc-Df-Fe has been prepared in-house and is stored in acetonitrile at -80°C.^[1] The chemical modification to obtain DFO-N-suc-cetuximab and DFO-N-suc-Rituximab for radiolabeling has been performed according to literature procedures.^[11.19] Size exclusion (SEC)-HPLC was performed to determine protein integrity and radiochemical purity on a Jasco HPLC system (Easton. USA) equipped with a superdex 200 10/30 GL size exclusion column (GE Healthcare Life Sciences. Eindhoven. The Netherlands) including a guard column. using a mixture of 0.05 M sodium phosphate. 0.15 M sodium chloride (pH 6.8). and 0.01 M NaN₃ as the eluent at a flow rate of 0.5 mL/min. The mAb is eluted at 25 minutes. whereas free ⁸⁹Zr is eluted at 45 minutes using this HPLC setup. The radioactivity of the eluate was monitored using an in-line Nal(TI) radiodetector (Raytest Sockett). iTLC analysis was performed to determine the radiolabeling efficiency and to determine the product radiochemical purity after PD-10 purification (GE Healthcare Life Sciences. Eindhoven. The Netherlands). in addition to SEC-HPLC. TLC was performed with iTLC strips (TEC-Control. Chromatography Strips. Model 150-771) and run with MeCN/20 mM citric acid pH 4.8 – 5.2 (1:9. v/v). The immunoreactivity was determined using A431 (EGFR) or SU-DHL-4 (CD20) cells. essentially as described by Lindmo et al.^[2] Endotoxin content was tested using a Endosafe-PTS100 reader from Charles Rivers (Wilmington. USA). ⁸⁹Zr with a molar activity of \geq 0.15 GBq/nmol in 1 M oxalic acid was obtained from Perkin Elmer (Boston. USA). The new radiopharmaceutical chemistry nomenclature guidelines were followed.^[3]

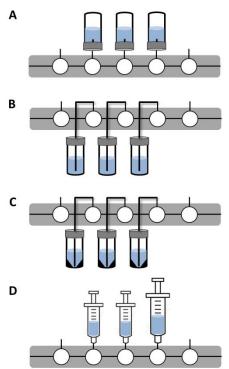
Detailed System Setup: At the indicated valve positions on the cassettes the following was mounted (Figure 1):

- 1. A Lectro-cath polyethylene tubing 50 cm (Vygon) is connecting cassette 1 to valve 6 of cassette 2.
- 2. A 3 mL syringe luer lock tip (BD Plastipak. 300185) containing a solution of DFO-mAb: DFO-*N*-succetuximab or DFO-*N*-suc-rituximab (0.71 mL. 2 5 mg/mL) and 0.5 M HEPES pH = 7 (0.5 mL) to valve 2.
- A 3 mL syringe luer lock tip (BD Plastipak. 300185) containing a solution of 2 M Na₂CO₃ (0.09 mL) and 0.5 M HEPES pH = 7 (0.5 mL) to valve 3.
- A 5 mL syringe luer lock tip (BD Plastipak. 302187) containing an eluent solution of 5 mg/mL gentisic acid pH = 5.0 (3.0 mL for cetuximab and 2.5 mL for rituximab) to valve 4.
- In horizontal position a V-green 10 cm polyethylene tubing (Vygon) is connecting a needle ventilated glass vial containing ⁸⁹Zr in 1M oxalic acid (0.2 mL) to valve 6.
- 7. A Lectro-cath polyethylene tubing 15 cm (Vygon) is connecting a 20 mL syringe luer lock tip (Braun) to valve 7.

- 8. A Lectro-cath polyethylene tubing 15 cm (Vygon) is connecting valve 8 to a PD-10 desalting column on valve 10.
- 9. A V-green 10 cm polyethylene tubing (Vygon) equipped with a GS 0.22 um filter unit (Millex) is connected to valve 9 for ventilation.
- In vertical position a PD-10 desalting column is mounted. preconditioned by flushing with 5 mg/mL gentisic acid pH = 5.0 in saline (4 x 5 mL). while in horizontal position a Lectro-cath polyethylene tubing 15 cm (Vygon) is placed connecting a needle ventilated sterile glass vial capped with rubber septum (20 mL) for product collection to valve 10.

Figure 1: Schematic representation of the complete and optimized automated ⁸⁹Zr-labeling of DFO-mAb on a Scintomics GRP 2V module with the positions of reagent vials. ⁸⁹Zr-containing reaction vial. transfer lines. PD-10 desalting column and product vial that will contain the purified ⁸⁹Zr-labeled mAb indicated.

Full Quality control: To determine the radiolabeling yield the start amount of radioactivity. which is present in the vial that contains ⁸⁹Zr in 1M oxalic acid. and the amount of radioactivity in the product vial after PD-10 purification were measured in a dose calibrator. To calculate the percentage radiolabeling yield. the amount of radioactivity in the product vial was divided by the start amount of radioactivity and multiplied by 100%.^[3]


For radiochemical purity analysis by iTLC. 2 μ L of the product fraction was spotted on an iTLC strip and developed with MeCN/20 mM citric acid (1:9. v/v). [⁸⁹Zr]Zr-DFO-*N*-suc-cetuximab and [⁸⁹Zr]Zr-DFO-*N*-suc-rituximab had a Rf = 0. and free ⁸⁹Zr and [⁸⁹Zr]Zr-*N*-suc-DFO a Rf = 1. When the eluent front reached the top of the iTLC strip. the strip was taken from the eluent. and cut on the indicated line. The bottom and top of the strip were counted

independently in a γ-counter (LKB Wallac 1282 CompuGamma; Pharmacia) on the 511 and 909-keV γ-energy of ⁸⁹Zr. The radiochemical purity was calculated by dividing the product counts by the total number of counts from the iTLC strip. multiplied by 100%.

For radiochemical purity analysis by SEC-HPLC. 20 µL of the product fraction was injected onto a size-exclusion HPLC column. UV absorption was detected at a 280 nm wavelength and the radioactivity signal by radio detection (Figure 1). The ⁸⁹Zr-labeled mAbs elute after approximately 25 minutes from the HPLC column. whereas unconjugated ⁸⁹Zr and [⁸⁹Zr]Zr-*N*-suc-DFO elutes after approximately 45 minutes. All peaks were integrated to determine the radiochemical purity according to SEC-HPLC, as well as the protein integrity.

The immunoreactivity was determined essentially as described by Lindmo et al. using EGFR-expressing fixed A431 cells for [⁸⁹Zr]Zr-DFO-*N*-suc-cetuximab and CD20-expressing fixed SU-DHL4 cells for [⁸⁹Zr]Zr-DFO-*N*-suc-rituximab.^[2]

Tested vial configurations for automated ⁸⁹Zr-mAb labeling

Schematic representation of tested vial configurations for optimal reagent aspiration and transfer to the reaction vial with (A) Up-side-down vials with purged septum and excess of reagents; (B) flat-bottom vials containing excess of reagents; (C) Successful setup with V-shaped vials with exact reagent volumes and (D) Successful setup with syringes with exact reagent volumes.

Labeling data of 20 MBq reactions for [89Zr]Zr-DFO-N-suc-cetuximab and [89Zr]DFO-N-suc-rituximab

Data of produced [⁸⁹Zr]Zr-DFO-N-suc-cetuximab:

PD-10 Elution: 2 mL reaction mixture 1 mL flow through 2.5 mL product elution

All three are combined in 1 product fraction.

Average yields base on iTLC of 3 productions of $[^{89}Zr]Zr$ -DFO-N-suc-cetuximab: 90.3 ± 10.5 % Average isolated yields of the 3 productions of $[^{89}Zr]Zr$ -DFO-N-suc-cetuximab: 73.8 ± 5.3 %

Labeling number	1	2	3
Start activity (MBq)	21.45	20.74	20.4
Isolated product (MBq)	14.55	16.11	15.47
Labeling yield (non decay corrected)(%)	67.8	77.7	75.8
Radiochemical yield by iTLC of the crude reaction mixture (%)	78.2	96.1	96.5
Radiochemical purity by iTLC (%)	98.9	98.9	98.5
Radiochemical purity by SEC-HPLC (%)	99.3	99.7	99.6

Data of produced [⁸⁹Zr]Zr-DFO-N-suc-rituximab:

PD-10 Elution: 2 mL reaction mixture 1mL flow through 2 mL product elution

All three are combined in 1 product fraction.

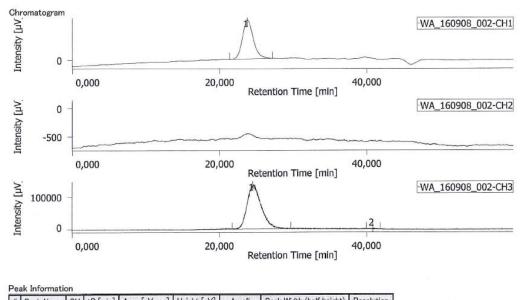
Average yields based on iTLC of 3 productions of $[^{89}Zr]Zr$ -DFO-N-suc-cetuximab: 96.0 ± 0.5 % Average isolated yields of 3 productions of $[^{89}Zr]Zr$ -DFO-N-suc-rituximab: 62.8 ± 5.1 %

Labeling number	1	2	3
Start activity (MBq)	17.45	17.15	16.05
Isolated product (MBq)	10.85	11.69	9.30
Labeling yield (non decay corrected)(%)	62.3	68.2	58.0
Radiochemical yield by iTLC of the crude reaction mixture (%)	96.1	96.5	95.5
Radiochemical purity by iTLC (%)	99.3	99.0	99.2
Radiochemical purity by SEC-HPLC (%)	100.0	100.0	100.0

Table 2: overview the automated [89Zr	r]Zr-DFO-N-suc-rituximab labeling	using a Scintomics Module
---------------------------------------	-----------------------------------	---------------------------

Labeling data of 60 MBq reactions for [⁸⁹Zr]Zr-DFO-N-suc-cetuximab and [⁸⁹Zr]DFO-N-suc-rituximab

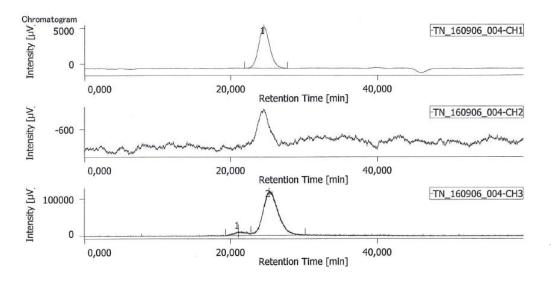
Data of produced [⁸⁹Zr]Zr-DFO-N-suc-cetuximab:


Table 3: Production and Quality Control data

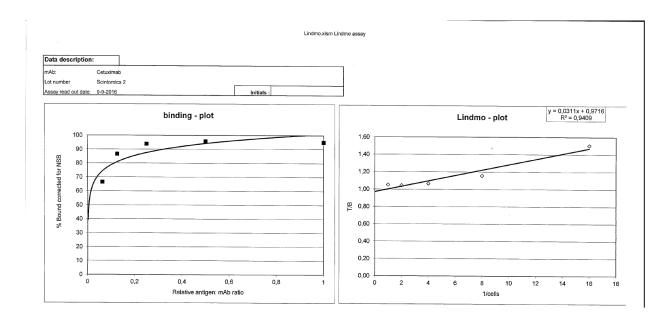
Labeling number	1	2	3
Reaction details			
Start activity (MBq)	63.03	65.88	61.71
Radiochemical yield by iTLC of the crude reaction mixture. before PD-10 purification (%)	93.0	92.3	90.7
Isolated product (MBq)	46.67	50.59	44.97
Labeling yield (non decay corrected) (%)	74.0	76.8	72.9
Quality Control purified product			
Radiochemical purity by iTLC (%)	98.2	98.7	98.0
Radiochemical purity by SEC-HPLC (%)	99.3	99.4	99.8
Protein integrity by SEC-HPLC at 280 nm (%)	100.0	100.0	100.0
Immunoreactivity by Lindmo assay on A431 cells (%)	96.6	95.1	95.5
Endotoxin tests			
Sample value bacterial endotoxin content assay (< 2.5 EU/mL)	0.278	0.200	0.200
Sample rxn time CV bacterial endotoxin content assay (< 25%)	19.1	0.0	0.0
Spike rxn time CV bacterial endotoxin content assay (< 25%)	2.2	1.3	3.8
Spike recovery bacterial endotoxin content assay (50 -200%)	90	108	96

Data of produced [⁸⁹Zr]Zr-DFO-N-suc-rituximab:

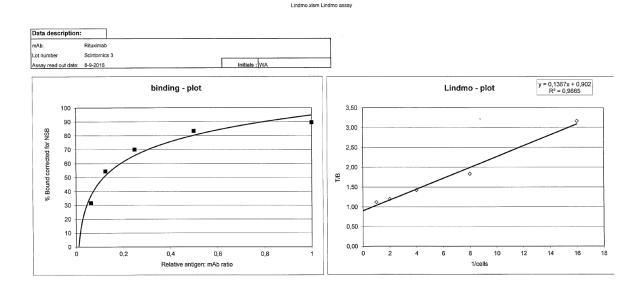
Talala A.	Dura durations		O	Contral	
Table 4:	Production	and	Quality	Control	αατα


Labeling number	1	2	3
Reaction details			
Start activity (MBq)	57.14	66.54	65.34
Radiochemical yield by iTLC of the crude reaction mixture. before PD-10 purification (%)	N.D.	95.3	95.4
Isolated product (MBq)	33.83	43.28	41.56
Labeling yield (non decay corrected) (%)	59.2	65.0	63.6
Quality Control purified product			
Radiochemical purity by iTLC (%)	99.1	99.2	99.1
Radiochemical purity by SEC-HPLC (%)	100.0	100.0	100.0
Protein integrity by SEC-HPLC at 280 nm (%)	100.0	100.0	100.0
Immunoreactivity by Lindmo assay on A431 cells (%)	86.8	87.2	89.5
Endotoxin tests			
Sample value bacterial endotoxin content assay (< 2.5 EU/mL)	0.503	0.200	0.200
Sample rxn time CV bacterial endotoxin content assay (< 25%)	0.0	0.0	0.0
Spike rxn time CV bacterial endotoxin content assay (< 25%)	13.3	5.1	3.3
Spike recovery bacterial endotoxin content assay (50 -200%)	99	122	133

SEC-HPLC of [89Zr]Zr-DFO-N-suc-cetuximab produced on a Scintomics automate


#	Peak Name	CH	tR [min]	Area [µV·sec]	Height [µV]	Area%	Peak Width (half height)	Resolution
1	mAb	1	23,750	423762	4134	100,00	0 1,54	2 N/
		101.01		002 CH-2 - N Area [µV·sec]		Area%	Peak Width (half height)	Resolution
#		101.01		Area [µV·sec]	Height [µV]	Area% 99,440	Peak Width (half height) 1,991	Resolution 5,956

SEC-HPLC of [89Zr]Zr-DFO-N-suc-rituximab produced on a Scintomics automate



#	Peak Name	CH	tR [min]	Area [µV sec]	Height [µV]	Area%	Peak Width (half height)	Resolution
1	Unknown	1	24,500	603753	5734	100,00	0 1,60	7 N/
	The second second second			004 CH-2 - N				
	The second second second			004 CH-2 - N Area [µV·sec]		Area%	Peak Width (half height)	Resolution
#	The second second second			Area [µV·sec]	Height [µV]	Area% 6,336	Peak Width (half height) 2 625	Resolution 1,038

Lindmo binding curve of [⁸⁹Zr]Zr-DFO-N-suc-cetuximab produced on a Scintomics automate

Lindmo binding curve of [⁸⁹Zr]Zr-DFO-N-suc-rituximab produced on a Scintomics automate

Program for automated labeling

Time [min]	Function	Parameter
0.00	Start Chromatogram	Ch. 4.5.6.7.9.10 (500 ms SliceWidth)
0.02	Valve Position	Valve 7 = Position 4
0.02	Valve Position	Valve 6 = Position 2
0.02	Valve Position	Valve 3 = Position 4
0.02	Valve Position	Valve 2 = Position 3
0.02	Valve Position	Valve 1 = Position 2
0.05	Dispenser (Dispenser 1)	Dispenser 1 Aspirates 3000 µl from 1 (3000 µl/min)
1.06	Wait for Input	Signal Dispenser 1 ready
1.08	Valve Position	Valve 6 = Position 3
1.10	Dispenser (Dispenser 1)	Dispenser 1 Dispenses 3000 µl to 1 (3000 µl/min)
2.11	Wait for Input	Signal Dispenser 1 ready
2.13	Dispenser (Dispenser 1)	Dispenser 1 Aspirates 3000 µl from 1 (4000 µl/min)
2.89	Wait for Input	Signal Dispenser 1 ready
2.91	Dispenser (Dispenser 1)	Dispenser 1 Dispenses 3000 µl to 1 (4000 µl/min)
3.67	Wait for Input	Signal Dispenser 1 ready
3.69	Valve Position	Valve 2 = Position 4
3.69	Valve Position	Valve 6 = Position 2
3.71	Dispenser (Dispenser 1)	Dispenser 1 Aspirates 4000 µl from 1 (4000 µl/min)
4.72	Wait for Input	Signal Dispenser 1 ready
4.73	Valve Position	Valve 6 = Position 3
4.74	Dispenser (Dispenser 1)	Dispenser 1 Dispenses 4000 µl to 1 (4000 µl/min)
5.74	Wait for Input	Signal Dispenser 1 ready
5.76	Dispenser (Dispenser 1)	Dispenser 1 Aspirates 4000 µl from 1 (4000 µl/min)
6.77	Wait for Input	Signal Dispenser 1 ready
6.78	Dispenser (Dispenser 1)	Dispenser 1 Dispenses 4000 µl to 1 (4000 µl/min)
7.79	Wait for Input	Signal Dispenser 1 ready
67.80	Dispenser (Dispenser 1)	Dispenser 1 Aspirates 5000 μl from 1 (5000 μl/min)
68.81	Wait for Input	Signal Dispenser 1 ready
68.82	Valve Position	Valve 5 = Position 2
68.82	Valve Position	Valve 7 = Position 2
68.82	Valve Position	Valve 8 = Position 4
68.82	Valve Position	Valve 9 = Position 2
68.82	Valve Position	Valve 10 = Position 2
68.84	Dispenser (Dispenser 1)	Dispenser 1 Dispenses 5000 µl to 1 (4000 µl/min)
70.09	Wait for Input	Signal Dispenser 1 ready
70.11	Valve Position	Valve 2 = Position 3
70.11	Valve Position	Valve 3 = Position 3
70.11	Valve Position	Valve 4 = Position 4
70.11	Valve Position	Valve 6 = Position 2

70.11	Valve Position	Valve 7 = Position 4
71.11	Valve Position	Valve 10 = Position 1
71.13	Dispenser (Dispenser 1)	Dispenser 1 Aspirates 8000 μl from 1 (4000 $\mu l/min)$
73.13	Wait for Input	Signal Dispenser 1 ready
73.16	Valve Position	Valve 7 = Position 2
73.16	Valve Position	Valve 10 = Position 2
73.18	Dispenser (Dispenser 1)	Dispenser 1 Dispenses 8000 μl to 1 (4000 μl/min)
75.18	Wait for Input	Signal Dispenser 1 ready
76.99	Valve Position	Valve 10 = Position 1
77.00	Stop all	-

References

- Vugts DJ. van Dongen GA. ⁸⁹Zr-labeled compounds for PET imaging guided personalized therapy. Drug Discov. Today Technol.. 2011. 8. 53-61.
- Lindmo T. Boven E. Cuttitta F. Fedorko J. Bunn PA Jr.. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess.. J Immunol. Methods. 1984. 72. 77-89.
- Coenen HH. Gee AD. Adam M. Antoni G. Cutler CS. Fujibayashi Y. Jeong JM. Mach RH. Mindt TL. Pike VW. Windhorst AD. Consensus nomenclature rules for radiopharmaceutical chemistry - Setting the record straight.. Nucl. Med. Biol.. 2017. 55. v-xi