COMPARATIVE QC ANALYSIS OF TRACER [$\left.{ }^{18} \mathrm{~F}\right] 6$ PURIFIED BY SEMI-PREPARATIVE HPLC OR SEP-PAK C_{18} TRAPPING

Supplemental Figure 1 - Comparative QC analysis of tracer [$\left.{ }^{18} \mathrm{~F}\right] 6$ purified by semi-preparative HPLC (left) or Sep-Pak C_{18} trapping.

COMPLETE BIODISTRIBUTION STUDIES

Statistical analysis

Statistical analyses were performed using GradPad prism 7. Multiple t tests were performed to compare biodistribution in unblocked and blocked mice, multiple comparisons were corrected using the Holm-Sidak method. The difference was considered statistically significant when p value was <0.05.

Supplemental Table 1 - Complete biodistribution study for compounds [$\left.{ }^{18} \mathrm{~F}\right] 1-3$

$\begin{aligned} & \text { Tissue } \\ & \text { (\%ID/g) } \end{aligned}$	[$\left.{ }^{8} \mathrm{~F}\right] 1$		[$\left.{ }^{18} \mathrm{~F}\right] 2$		[$\left.{ }^{8} \mathrm{~F}\right] 3$	
	$\begin{aligned} & 1 \mathrm{~h} \\ & \mathrm{n}=8 \end{aligned}$	1h blocked $n=4$	$\begin{aligned} & 1 \mathrm{~h} \\ & \mathrm{n}=6 \end{aligned}$	1h blocked $n=4$	$\begin{aligned} & 1 \mathrm{~h} \\ & \mathrm{n}=8 \end{aligned}$	1h blocked $n=5$
blood	0.57 ± 0.15	0.45 ± 0.27	0.52 ± 0.06	0.46 ± 0.24	0.50 ± 0.16	0.30 ± 0.10
fat	0.99 ± 0.39	$0.14 \pm 0.08 *$	0.73 ± 0.26	$0.06 \pm 0.01^{* *}$	0.35 ± 0.15	0.16 ± 0.10
testes	0.62 ± 0.15	$0.10 \pm 0.02^{* * *}$	0.67 ± 0.17	$0.08 \pm 0.02^{* *}$	0.30 ± 0.09	$0.10 \pm 0.03^{* *}$
intestine	0.54 ± 0.11	0.57 ± 0.23	0.33 ± 0.05	0.31 ± 0.02	0.28 ± 0.07	0.23 ± 0.06
stomach	0.12 ± 0.05	0.11 ± 0.08	0.10 ± 0.03	0.06 ± 0.02	0.08 ± 0.04	0.06 ± 0.02
spleen	2.67 ± 0.98	$0.13 \pm 0.03^{* *}$	5.01 ± 0.64	$0.09 \pm 0.03^{* * *}$	0.84 ± 0.52	0.09 ± 0.05
liver	2.90 ± 0.56	3.00 ± 0.53	1.69 ± 0.19	1.76 ± 0.17	1.17 ± 0.28	1.25 ± 0.17
pancreas	0.55 ± 0.16	$0.11 \pm 0.03^{* *}$	0.33 ± 0.05	$0.06 \pm 0.01^{* * *}$	0.27 ± 0.13	0.08 ± 0.03
adrenal	4.77 ± 1.75	$0.35 \pm 0.14 * *$	4.65 ± 1.75	$0.20 \pm 0.05^{* *}$	1.35 ± 0.52	$0.24 \pm 0.07^{* *}$
kidney	114.00 ± 41.30	$3.54 \pm 0.83^{* *}$	71.70 ± 18.0	$2.11 \pm 0.19^{* * *}$	51.80 ± 24.10	$2.12 \pm 0.73^{*}$
lung	1.37 ± 0.36	$0.25 \pm 0.06^{* *}$	1.39 ± 0.17	$0.22 \pm 0.03^{* * *}$	0.66 ± 0.19	$0.30 \pm 0.11^{*}$
heart	0.30 ± 0.06	$0.15 \pm 0.04 *$	0.33 ± 0.08	$0.09 \pm 0.02^{* *}$	0.19 ± 0.07	0.12 ± 0.06

tumor	6.04 ± 1.24	$0.33 \pm 0.07^{* * *}$	8.28 ± 1.25	$0.27 \pm 0.06^{* * *}$	4.36 ± 0.95	$0.35 \pm 0.21^{* * *}$
muscle	0.26 ± 0.08	0.13 ± 0.03	0.23 ± 0.04	$0.12 \pm 0.05^{*}$	0.17 ± 0.07	0.09 ± 0.03
bone	0.36 ± 0.02	0.30 ± 0.07	0.44 ± 0.09	0.30 ± 0.06	0.20 ± 0.06	0.16 ± 0.06
brain	0.04 ± 0.01	0.03 ± 0.01	0.04 ± 0.01	$0.02 \pm 0.00^{*}$	0.03 ± 0.01	0.02 ± 0.00
T/M	23.43 ± 3.71	$2.63 \pm 1.10^{* * *}$	37.30 ± 9.53	$2.66 \pm 1.60^{* *}$	29.00 ± 12.40	$3.54 \pm 1.43^{*}$
T/B	10.82 ± 1.64	$0.91 \pm 0.44^{* * *}$	15.95 ± 1.37	$0.77 \pm 0.48^{* * *}$	9.68 ± 4.53	$1.17 \pm 0.70^{*}$
T/K	0.07 ± 0.06	0.10 ± 0.03	0.12 ± 0.04	0.13 ± 0.02	0.11 ± 0.08	0.16 ± 0.05

Significance of differences between unblocked and blocked groups: ' $p<0.05 ;{ }^{*} p<0.01$; "'p p 0.001 .

Supplemental Table 2 - Complete biodistribution study for compounds $\left[{ }^{[18} \mathrm{F}\right] 4-6$.

Tissue(\%ID/g)	[$\left.{ }^{8} \mathrm{~F}\right] 4$		$\left[{ }^{18} \mathrm{~F}\right] 5$		[$\left.{ }^{18} \mathrm{~F}\right] 6$		
	$\\| \begin{aligned} & 1 \mathrm{~h} \\ & \mathrm{n}=7 \end{aligned}$	1h blocked $\mathrm{n}=4$	$\begin{aligned} & 1 \mathrm{~h} \\ & \mathrm{n}=6 \end{aligned}$	1h blocked $n=4$	$\begin{aligned} & 1 \mathrm{~h} \\ & \mathrm{n}=5 \end{aligned}$	1h blocked $n=4$	
blood	0.74 ± 0.15	$0.24 \pm 0.11^{* *}$	0.89 ± 0.42	0.44 ± 0.02	0.68 ± 0.26	1.64 ± 2.58	
fat	1.05 ± 0.49	$0.04 \pm 0.03^{*}$	0.83 ± 0.33	0.16 ± 0.06	0.38 ± 0.14	$0.06 \pm 0.02^{*}$	
testes	0.67 ± 0.27	$0.08 \pm 0.03^{*}$	0.74 ± 0.55	0.24 ± 0.05	0.33 ± 0.05	$0.14 \pm 0.04 * *$	
intestine	0.48 ± 0.22	0.18 ± 0.04	12.96 ± 4.61	12.36 ± 0.55	23.05 ± 4.39	24.50 ± 4.86	
stomach	0.15 ± 0.03	$0.06 \pm 0.02^{* *}$	0.37 ± 0.45	0.12 ± 0.10	1.17 ± 1.35	0.88 ± 0.41	
spleen	3.36 ± 1.08	$0.13 \pm 0.06{ }^{* *}$	3.21 ± 1.73	0.21 ± 0.02	1.77 ± 0.70	$0.18 \pm 0.10^{*}$	
liver	1.28 ± 0.18	0.90 ± 0.25	1.14 ± 0.48	0.67 ± 0.13	0.98 ± 0.22	0.87 ± 0.17	
pancreas	0.68 ± 0.50	0.08 ± 0.03	0.30 ± 0.17	0.13 ± 0.06	0.26 ± 0.06	0.16 ± 0.14	
adrenal	6.66 ± 2.33	$0.26 \pm 0.15^{* *}$	2.89 ± 1.94	0.34 ± 0.09	2.14 ± 0.61	$0.20 \pm 0.04 * *$	
kidney	164.33 ± 50.20	$1.62 \pm 0.73^{* *}$	73.86 ± 35.21	1.04 ± 0.14	83.22 ± 6.07	$1.30 \pm 0.25^{* * *}$	
lung	1.67 ± 0.47	$0.19 \pm 0.09^{* *}$	1.21 ± 0.48	0.39 ± 0.01	1.05 ± 0.14	$0.43 \pm 0.23 *$	
heart	0.34 ± 0.08	$0.09 \pm 0.04 * *$	0.31 ± 0.11	0.15 ± 0.00	0.22 ± 0.03	0.17 ± 0.07	
tumor	6.26 ± 0.82	$0.18 \pm 0.11^{* * *}$	13.96 ± 5.20	$0.41 \pm 0.04^{*}$	11.94 ± 2.29	$0.37 \pm 0.10^{* * *}$	
muscle	0.28 ± 0.07	$0.11 \pm 0.08^{*}$	0.36 ± 0.18	0.15 ± 0.02	0.17 ± 0.02	$0.10 \pm 0.02^{*}$	
bone	0.76 ± 0.57	0.56 ± 0.20	0.34 ± 0.14	0.17 ± 0.03	0.56 ± 0.14	0.57 ± 0.37	
brain	0.05 ± 0.01	$0.02 \pm 0.01^{* *}$	0.04 ± 0.01	0.02 ± 0.00	0.03 ± 0.01	0.03 ± 0.03	
T/M	23.40 ± 5.00	$1.91 \pm 0.46^{* * *}$	49.67 ± 28.45	2.85 ± 0.70	72.20 ± 13.46	$3.78 \pm 0.17^{* *}$	
T/B	8.70 ± 1.74	$0.75 \pm 0.18^{* * *}$	17.12 ± 5.40	$0.95 \pm 0.10^{* *}$	19.80 ± 7.23	$0.72 \pm 0.43^{*}$	
T/K	0.04 ± 0.02	$0.11 \pm 0.03^{* *}$	0.21 ± 0.08	0.41 ± 0.09	0.14 ± 0.02	$0.29 \pm 0.07 *$	

Significance of differences between unblocked and blocked groups: ${ }^{\prime} p<0.05 ;{ }^{*} p<0.01$; "'p> 0.001 .

Supplemental Table 3 - Complete biodistribution study for compounds $\left[{ }^{18} \mathrm{~F}\right] 7-8$ and $\left[{ }^{18}\right.$ F]DCFPyL
Tissue

$\|$ 1h \quad| $\left[{ }^{18} \mathrm{~F}\right] 7$ |
| :---: |
| I 1h blocked |

[${ }^{18}$ F] 8
1h blocked
[${ }^{18}$ F]DCFPyL
1h

(\%ID/g)	$\mathrm{n}=6$	$\mathrm{n}=4$	$\mathrm{n}=8$	$\mathrm{n}=4$	$\mathrm{n}=8$
blood	0.13 ± 0.08	0.85 ± 1.37	0.56 ± 0.11	$0.39 \pm 0.07 *$	0.60 ± 0.13
fat	0.27 ± 0.14	0.02 ± 0.02	0.80 ± 0.28	$0.06 \pm 0.02^{* * *}$	1.05 ± 0.64
testes	0.18 ± 0.05	$0.04 \pm 0.01^{* *}$	0.57 ± 0.12	$0.18 \pm 0.09^{* * *}$	0.57 ± 0.21
intestine	22.24 ± 2.79	26.68 ± 9.98	0.32 ± 0.06	0.26 ± 0.05	0.33 ± 0.07
stomach	0.21 ± 0.12	1.55 ± 2.10	0.11 ± 0.03	0.09 ± 0.04	0.12 ± 0.03
spleen	0.75 ± 0.36	0.15 ± 0.16	6.47 ± 2.17	$0.12 \pm 0.04 * * *$	3.98 ± 2.35
liver	0.83 ± 0.34	0.73 ± 0.21	0.20 ± 0.05	0.16 ± 0.04	1.82 ± 0.24
pancreas	0.13 ± 0.11	0.06 ± 0.06	0.46 ± 0.15	$0.09 \pm 0.03^{* * *}$	0.58 ± 0.32
adrenal	0.81 ± 0.25	$0.06 \pm 0.09 * *$	7.72 ± 2.70	$0.14 \pm 0.03^{* * *}$	3.02 ± 2.14
kidney	20.35 ± 9.85	0.56 ± 0.18	143.85 ± 61.73	$2.19 \pm 0.44^{* *}$	123.76 ± 37.67
lung	0.40 ± 0.13	$0.12 \pm 0.04 *$	1.97 ± 0.34	$0.33 \pm 0.06^{* * *}$	1.62 ± 0.68
heart	0.07 ± 0.02	0.04 ± 0.01	0.28 ± 0.07	$0.13 \pm 0.01^{* *}$	0.35 ± 0.12
tumor	5.09 ± 1.10	$0.15 \pm 0.06^{* * *}$	16.66 ± 2.74	$0.35 \pm 0.03^{* * *}$	11.64 ± 3.52
muscle	0.05 ± 0.01	0.24 ± 0.37	0.27 ± 0.06	0.13 ± 0.06 **	0.29 ± 0.12
bone	0.10 ± 0.07	0.16 ± 0.25	0.25 ± 0.10	0.15 ± 0.02	0.33 ± 0.07
brain	0.01 ± 0.01	0.01 ± 0.01	0.02 ± 0.00	$0.01 \pm 0.00^{* * *}$	0.03 ± 0.01
T/M	117.13 ± 52.06	$3.62 \pm 3.62 *$	67.23 ± 25.93	$3.07 \pm 0.92^{* * *}$	43.67 ± 12.21
T/B	54.57 ± 38.49	1.56 ± 0.87	30.95 ± 7.76	$0.92 \pm 0.24 * * *$	19.64 ± 4.41
T/K	0.28 ± 0.22	0.28 ± 0.12	0.14 ± 0.07	0.17 ± 0.04	0.10 ± 0.02

Significance of differences between unblocked and blocked groups: ${ }^{*} p<0.05$; ${ }^{* *} p<0.01$; ${ }^{* * *} p<$ 0.001 .

IN VITRO PLASMA STABILITY STUDY

In vitro stability of $\left[{ }^{18} \mathrm{~F}\right] 1-8$ and $\left[{ }^{18} \mathrm{~F}\right]$ DCFPyL was conducted in balb/c mouse plasma following previously published procedures $(1,2)$, and monitored by radio-HPLC using the semi-preparative column eluted with various gradients of water/acetonitrile (0.1% TFA). No change in retention time was observed over the course of the study. Neither degradation nor release of free ${ }^{18}$ F-fluoride was detected.

SYNTHESIS OF COLD PRECURSORS

Chemicals and instrumentation

Glu-ureido-Lys trifluoroacetate, t-butyl protected Glu-ureido-Lys (OtBu-Glu(OtBu)-ureido-LysOtBu), methyl 4-[(dimethylamino)methyl]benzoate (11), 4-azidomethylbenzoic acid (15), 4azidomethylnicotinic acid (16), N-propargyl- N, N-dimethylammoniomethyltrifluoroborate, N propargylpyridinium para-trifluoroborate, DCFPyL and its fluorination precursor (S)-2-[3-[(S)-1-carboxy-5-(6-trimethylammonium-pyridine-3-carboxamido)pentyl]ureido]pentanedioic acid trifluoroacetate salt were prepared according to literature procedures (1-7). All other chemicals and solvents were obtained from commercial sources, and used without further purification. Purification and quality control of cold and radiolabeled PSMA-targeting peptidomimetics were performed on Agilent HPLC systems equipped with a model 1200 quaternary pump, a model 1200 UV absorbance detector (set at 220 nm), and a Bioscan (Washington, DC) Nal scintillation detector. The operation of Agilent HPLC systems was controlled using the Agilent ChemStation software. The HPLC columns used were a Phenomenex (Torrance, CA) Luna C_{18} semi-
preparative column ($5 \mu, 250 \times 10 \mathrm{~mm}$), a Phenomenex Luna C_{18} analytical column ($5 \mu, 250 \times$ 4.6 mm), or a Phenomenex Jupiter C_{18} analytical column ($10 \mu, 250 \times 4.6 \mathrm{~mm}$). Lyophilization was conducted using a Labconco (Kansas City, MO) FreeZone 4.5 Plus freeze-drier. Mass analyses were performed using a Bruker (Billerica, MA) Esquire-LC/MS system with ESI ion source. Anion exchange columns were purchased from ORTG Inc. (Orkdale, TN), and C_{18} Sep-Pak cartridges $\left(1 \mathrm{~cm}{ }^{3}, 50 \mathrm{mg}\right)$ were obtained from Waters (Milford, MA). ${ }^{18}$ F-Fluoride was produced by the ${ }^{18} \mathrm{O}(\mathrm{p}$, n) ${ }^{18} \mathrm{~F}$ reaction using an Advanced Cyclotron Systems Inc. (Richmond, Canada) TR19 cyclotron. Radioactivity of ${ }^{18} \mathrm{~F}$-labeled tracers was measured using a Capintec (Ramsey, NJ) CRC ${ }^{\circledR}$-25R/W dose calibrator, and the radioactivity of mouse tissues collected from biodistribution studies were counted using a Perkin Elmer (Waltham, MA) Wizard2 2480 automatic gamma counter.

Synthesis of precursors (Supplemental Supplemental Figure 2)

Compound 1 was prepared by coupling of the Glu-Lys ureido scaffold with a modified benzoic derivative: 4-[(dimethylamino)methyl]benzoate 11 was directly alkylated with (iodomethyl)boronic pinacol ester, which was then converted to the zwitterionic trifluoroborate. The coupling between the corresponding NHS ester 14 with deprotected Glu-ureido-Lys backbone (TFA salt) afforded 1. Compounds 2-4 were prepared from azide-armed Glu-ureido-Lys scaffolds 19 and 20 (themselves prepared in similar fashion than 1), onto which was attached the desired trifluoroborate $\left(\mathrm{AMBF}_{3}\right.$ or pyrBF ${ }_{3}$) prosthetic via CuAAC. In a similar approach, the coupling of the desired prosthetic onto azide-armed PSMA-617 scaffolds (22-24, not shown, prepared on solid phase) afforded 5-8 (see below).

Supplemental Figure 2. General scheme for the synthesis of cold precursors 1-8.

Conditions: a. (lodomethyl)boronic pinacol ester (1.4 eq.), THF, rt, 24h; b. KHF_{2} (6 eq.), $\mathrm{HCl}(23$ eq.), $\mathrm{MeOH} /$ water, $60^{\circ} \mathrm{C}, 72 \mathrm{~h}$; c. N-hydroxysuccinimide (1.05 eq.), N, N^{\prime}-diisopropylcarbodiimide (1.05 eq.), DMF, rt, 24h; d. Glu-ureido-Lys trifluoroacetate (1.67 eq.), diisopropylethylamine (24.5 eq.), $\mathrm{MeOH}, 50^{\circ} \mathrm{C}, 72 \mathrm{~h}$.

Synthesis of N -[4-(N-trifluoroborylmethyl-N,Ndimethylammoniomethyl)benzoyloxy]succinimide (14)

A solution of 11 ($508 \mathrm{mg}, 2.6 \mathrm{mmol}$) and (iodomethyl)boronic pinacol ester ($1.0 \mathrm{~g}, 3.7 \mathrm{mmol}$) in distilled THF (10 mL) was stirred at room temperature for 24 h . The reaction mixture was concentrated under reduced pressure to obtain brown precipitant. The brown precipitant was washed with ether ($10 \mathrm{~mL} \times 5$) and dried under vacuum. The crude intermediate $12(1.4 \mathrm{~g})$ and potassium hydrogen difluoride ($1.2 \mathrm{~g}, 15.6 \mathrm{mmol}$) were dissolved in a mixture of $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$ in a $50-\mathrm{mL}$ plastic falcon tube. $\mathrm{HCl}(5 \mathrm{~mL}, 12 \mathrm{M})$ was added to the solution. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for 3 days. After being cooled to room temperature, the reaction mixture was filtered through a short path of silica gel, eluted with acetonitrile (100 mL), and concentrated to give viscous oil (720 mg). The viscous oil containing 13 was dissolved in DMF (10 mL). N-Hydroxysuccinimide ($317 \mathrm{mg}, 2.75 \mathrm{mmol}$) was added, followed by N, N diisopropylcarbodiimide ($348 \mathrm{mg}, 2.76 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 24 h . The reaction mixture was then concentrated under reduced pressure and purified by HPLC using the semi-preparative column eluted with 25% acetonitrile in $\mathrm{H}_{2} \mathrm{O}$ at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$ and the retention time of the desired product was 10.6 min . The HPLC eluate
fractions containing the product were collected and lyophilized to yield compound 14 as white solid ($150 \mathrm{mg}, 15 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27$ (d, $J=9.0 \mathrm{~Hz} 2 \mathrm{H}$), $\delta 7.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $\delta 4.56(\mathrm{~s}, 2 \mathrm{H}), \delta 3.06(\mathrm{~s}, 6 \mathrm{H}), \delta 2.95(\mathrm{~s}, 4 \mathrm{H}), \delta 2.57(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}):$ calculated for [M + Na] ${ }^{+}$ $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BF}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{4}$ 358.1; observed 381.1.

Synthesis of 1

Glu-ureido-Lys trifluoroacetate ($38.8 \mathrm{mg}, 0.122 \mathrm{mmol}$) and 14 ($26 \mathrm{mg}, 0.073 \mathrm{mmol}$) were dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$ followed by N, N-diisopropylethylamine ($312 \mu \mathrm{~L}, 1.792 \mathrm{mmol}$). The reaction mixture was heated at $50^{\circ} \mathrm{C}$ and stirred for 3 days and then concentrated under reduced pressure. The product was purified by HPLC using the semi-preparative column eluted with 15-35 \% acetonitrile (0.5% acetic acid) in $\mathrm{H}_{2} \mathrm{O}(0.5 \%$ acetic acid) at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. The HPLC eluate fractions containing the product were collected and lyophilized to yield 1 as a white solid ($13 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 7.77(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), \delta 7.60(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), \delta 4.42$ (s, 2H), ס 4.15 (m, 3H), ठ 3.36 (t, J = 6.0, 2H), ठ $2.95(\mathrm{~s}, 6 \mathrm{H}), \delta 2.41$ (t, J = $6.0 \mathrm{~Hz}, 2 \mathrm{H}), \delta 2.13-$ $2.02(\mathrm{~m}, 2 \mathrm{H}), \delta 1.91-1.75(\mathrm{~m}, 2 \mathrm{H}), \delta 1.71-1.55(\mathrm{~m}, 3 \mathrm{H}), \delta 1.50-1.32(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}$ (ESI): calculated for $[\mathrm{M}+\mathrm{H}]+\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{BF}_{3} \mathrm{~N}_{4} \mathrm{O}_{8}=563.3$; observed 563.4.

Compound 1 (QC)

Supplemental Figure 3 - HPLC trace of pure 1.

Conditions: a. 2,3,5,6-tetrafluorophenol (1.1 to 1.5 eq.), N, N-dicyclohexylcarbodiimide (0.9 to 1.5 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h}$; b. t-butyl protected Glu-ureido-Lys (0.67 to 0.83 eq.), THF, rt, 16 h ; c. 3% anisole in TFA, rt, 4 h ; d. For 2 and 3: N -propargyl- N, N-dimethyl-ammoniomethyltrifluoroborate (3 eq.), CuSO_{4} (3 eq.), Na ascorbate (6 eq .), $\mathrm{MeCN} /$ water, $45^{\circ} \mathrm{C}$, 2 h ; For 4: N -propargylpyridinium
para-trifluoroborate (0.4 eq., limiting reagent), CuSO_{4} (0.18 eq.), Na ascorbate (0.36 eq.), NaHCO_{3} (4 eq.), DMF/water, rt, 2 h.

Synthesis of 2,3,5,6-tetrafluorophenyl 4-azidomethylbenzoate (17)

A solution of 4-(azidomethyl)benzoic acid 15 ($719 \mathrm{mg}, 4.0 \mathrm{mmol}$) and 2,3,5,6-tetrafluorophenol ($731 \mathrm{mg}, 4.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was cooled in an ice/water bath. $N, N-$ dicyclohexylcarbodiimide ($743 \mathrm{mg}, 3.6 \mathrm{mmol}$) was added to the reaction mixture and stirred for 3 h. The reaction mixture was filtered and the filtrate was evaporated. After evaporation, the residue was dissolved in hexane (100 mL), and the solution was filtered again and washed with 1 N NaOH aqueous solution (100 mL). The organic phase was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and purified by chromatography on silica gel eluted with $1: 5$ ether/hexane to obtain the desired product 17 as white solid ($1.06 \mathrm{~g}, 82 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.25(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), \delta 7.52(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), \delta 7.06(\mathrm{~m}, 1 \mathrm{H}), \delta 4.42(\mathrm{~s}, 2 \mathrm{H}), \delta 4.15$ ($\mathrm{m}, J=4.9,2 \mathrm{H}$), $\delta 3.36$ (t, J=6.0 Hz, 2H), $\delta 2.95(\mathrm{~s}, 6 \mathrm{H}), \delta 2.41(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), \delta 4.50(\mathrm{~s}, 2 \mathrm{H})$. MS (ESI): calculated for [M] ${ }^{-} \mathrm{C}_{14} \mathrm{H}_{7} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{2} 325.1$; observed 325.6.

Synthesis of (S)-2-[3-[5-(4-azidomethylbenzoylamino)-(S)-1-(tertbutoxyloxycarbonyl)pentyl]ureido] pentanedioic acid bis(4-tert-butyl) ester (19)

A solution of t-butyl protected Glu-ureido-Lys ($101.9 \mathrm{mg}, 0.21 \mathrm{mmol}$) and 17 ($100.1 \mathrm{mg}, 0.31$ mmol) in THF (20 mL) was stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure and purified by chromatography on silica gel eluted with $1: 1$ hexane/EtOAc to obtain the desired product 19 as a light-yellow oil ($120.6 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89$ (d, J= 8.2 Hz 2 H), $\delta 7.37$ (d, J= $\left.8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), \delta 7.05(\mathrm{bt}, 1 \mathrm{H}), \delta 5.43(\mathrm{~m}$, $1 \mathrm{H})$, б $5.33(\mathrm{~m}, 1 \mathrm{H})$, б $4.39(\mathrm{~s}, 2 \mathrm{H})$, б $4.25(\mathrm{~m}, 2 \mathrm{H}), \delta 3.53-3.36(\mathrm{~m}, 2 \mathrm{H})$, б $2.28(\mathrm{~m}, 2 \mathrm{H})$, б 2.10$1.96(\mathrm{~m}, 1 \mathrm{H})$, б 1.87-1.75 (m, 2H), б 1.69-1.56 (m, 3H), б 1.43 (s, 18H), б $1.40(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{MS}(E S I):$ calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{32} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{8}$ 647.4; observed 647.6.

Synthesis of 2

A solution of 19 ($98 \mathrm{mg}, 0.15 \mathrm{mmol}$) in TFA (5 mL) containing 3% anisole was stirred at room temperature. After 4 h , the reaction mixture was concentrated under reduced pressure. The residue was dissolved in water (1 mL) and wash with hexane ($1 \mathrm{~mL} \times 3$) to remove anisole. The aqueous phase was lyophilized to obtain a yellow oil. The crude product was purified by HPLC using the semi-preparative column eluted with $25-50 \%$ acetonitrile (0.1% TFA) in water (0.1% TFA) in 25 min at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$, and the retention time of the desired product was 10 min . The HPLC eluate fractions containing the product were collected and lyophilized to yield deprotected 19 as white solid ($71 \mathrm{mg}, 99 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta 7.72$ (d, $J=8.2 \mathrm{~Hz} 2 \mathrm{H}$), $\delta 7.47$ (d, J= $8.2 \mathrm{~Hz}, 2 \mathrm{H}), \delta 4.65-4.90(\mathrm{~m}, 2 \mathrm{H}), \delta 4.46(\mathrm{~s}, 2 \mathrm{H}), \delta 4.16$ (dd, J=4.9, $8.8 \mathrm{~Hz}, 2 \mathrm{H}), \delta$ 3.37 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), \delta 2.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), \delta 2.10-2.15(\mathrm{~m}, 1 \mathrm{H}), \delta 1.75-1.60(\mathrm{~m}, 3 \mathrm{H}), \delta 1.47-$ $1.43(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI})$: calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{8}$ 479.2; observed 479.3.

A solution of deprotected $19(10.5 \mathrm{mg}, 0.022 \mathrm{mmol}), N$-propargyl- N, N-dimethylammoniomethyltrifluoroborate ($10.7 \mathrm{mg}, 0.065 \mathrm{mmol}$), $1 \mathrm{M} \mathrm{CuSO}_{4}(65 \mu \mathrm{~L}$), and 1 M sodium ascorbate ($162.5 \mu \mathrm{~L}$) in acetonitrile ($150 \mu \mathrm{~L}$) was incubated at $45^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was purified by HPLC using the semi-preparative column eluted with $15-35 \%$ acetonitrile (0.5% acetic acid) in water (0.5% acetic acid) at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. The HPLC eluate fractions containing the product were collected and lyophilized to yield 2 as white solid ($7 \mathrm{mg}, 49 \%$). ${ }^{1} \mathrm{H}$

NMR (300 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 8.31$ (s, 1H), $\delta 7.69$ (d, $\left.J=9 \mathrm{~Hz}, 2 \mathrm{H}\right), \delta 7.38$ (d, $\left.J=9 \mathrm{~Hz}, 2 \mathrm{H}\right), \delta 5.69(\mathrm{~s}$, 2H), ठ 4.72 (s, 2H), ठ 4.03 (m, 2H), ठ 3.33 (m, 2H), б 3.13 (m, 1H), б 2.97 (s, 6H), б 2.40-2.32 (m, $3 \mathrm{H}), \delta 1.99(\mathrm{~m}, 2 \mathrm{H}), \delta 1.88-1.69(\mathrm{~m}, 2 \mathrm{H}), \delta 1.67-1.50(\mathrm{~m}, 2 \mathrm{H}), \delta 1.45-1.30(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}):$ calculated for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{38} \mathrm{BF}_{3} \mathrm{~N}_{7} \mathrm{O}_{8} 644.3$; observed 644.4

Compound 2 (QC)

Supplemental Figure 4 - HPLC trace of pure 2.

Synthesis of 2,3,5,6-tetrafluorophenyl 4-azidomethyInicotinate (18)

A solution of 6-(azidomethyl)nicotinic acid 16 ($507 \mathrm{mg}, 2.8 \mathrm{mmol}$) and 2,3,5,6-tetrafluorophenol (700 mg, 4.2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was cooled in an ice/water bath. $N, N^{-}-$ dicyclohexylcarbodiimide ($865 \mathrm{mg}, 4.2 \mathrm{mmol}$) was added to the reaction mixture and stirred for 3 h. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure, and purified by chromatography on silica gel eluted with 1:30 ether/hexane to obtain the desired product 2 as white solid ($626.7 \mathrm{mg}, 68 \%)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.36$ (d, J= $2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $\delta 8.49$ (dd, J= 8.0, 2.2 Hz, 1H), $\delta 7.57$ (d, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $\delta 7.08$ (m, 1H), $\delta 4.64(\mathrm{~s}, 2 \mathrm{H}) \mathrm{MS}(\mathrm{ESI})$: calculated for $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}=327.05$; observed $[\mathrm{M}+\mathrm{H}]^{+}=327.30$.

Synthesis of (S)-2-[3-[5-(4-azidomethylpicolylamino)-(S)-1-(tert-

 butoxyloxycarbonyl)pentyl]ureido] pentanedioic acid bis(4-tert-butyl) ester (20) A solution of t-butyl protected Glu-ureido-Lys ($141.1 \mathrm{mg}, 0.30 \mathrm{mmol}$) and 18 ($118.0 \mathrm{mg}, 0.36$ mmol) in THF (20 mL) was stirred overnight at room temperature. The reaction mixture was concentrated under reduced pressure and purified by chromatography on silica gel eluted with 2:3 hexane/EtOAc to obtain the desired product 20 as light yellow oil ($163.2 \mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.09$ (d, J= 1.9 Hz 1 H), $\delta 8.26$ (dd, J= 8.3, 2.2 Hz 1 H), $\delta 7.45$ (bt, 1H), $\delta 7.43$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), \delta 5.50(\mathrm{~d}, ~ J=7.7 \mathrm{~Hz} 1 \mathrm{H}), \delta 5.32(\mathrm{~d}, J=8.0 \mathrm{~Hz} 1 \mathrm{H}), \delta 4.53(\mathrm{~s}, 2 \mathrm{H}), \delta 4.23(\mathrm{~m}, 2 \mathrm{H})$, б 3.57-3.38 (m, 2H), б $2.29(\mathrm{~m}, 2 \mathrm{H})$, б 2.20-1.97 (m,1H), б 1.82-1.76 (m, 2H), б 1.68-1.56 (m, 3H), $\delta 1.43(\mathrm{~s}, 18 \mathrm{H})$, $\delta 1.38(\mathrm{~s}, 9 \mathrm{H})$. $\mathrm{MS}(\mathrm{ESI})$: calculated for $\mathrm{C}_{31} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}=648.37$; observed $[\mathrm{M}+\mathrm{H}]^{+}=648.60$.
Synthesis of 3

A solution of 20 ($163.2 \mathrm{mg}, 0.15 \mathrm{mmol}$) in TFA (5 mL) containing 3% anisole was stirred at room temperature. After 4 h , the reaction mixture was concentrated under reduced pressure. The residue was dissolved in water (2 mL) and wash with hexane $(2 \mathrm{~mL} \times 3)$ to remove anisole. The aqueous phase was lyophilized to obtain crude a yellow oil (180.2 mg). The crude product (20.0 $\mathrm{mg}, 0.04 \mathrm{mmol}$), N-propargyl- N, N-dimethyl-ammoniomethyltrifluoroborate ($20.6 \mathrm{mg}, 0.13 \mathrm{mmol}$), $1 \mathrm{M} \mathrm{CuSO}_{4}(124 \mu \mathrm{~L})$, and 1 M sodium ascorbate $(310 \mu \mathrm{~L})$ in acetonitrile ($150 \mu \mathrm{~L}$) and $5 \% \mathrm{NH}_{4} \mathrm{OH}$ $(300 \mu \mathrm{~L})$ was incubated at $45^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was purified by HPLC using semipreparative column eluted with $3-13 \%$ acetonitrile in ammonium formate buffer ($40 \mathrm{mM}, \mathrm{pH} 6.0$) at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. 3 was obtained as white solid ($10.4 \mathrm{mg}, 40 \%$). MS (ESI): calculated for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{BF}_{3} \mathrm{~N}_{8} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}=645.28$; observed $[\mathrm{M}+\mathrm{H}]^{+}=645.50$.

Compound 3 (QC)

Supplemental Figure 5 - HPLC trace of pure 3.

Synthesis of 4

To a solution of N-propargylpyridinium para-trifluoroborate ($1 \mathrm{eq} ., 2.6 \mathrm{mg}, 14 \mu \mathrm{~mol}$) and deprotected 20 (2.5 eq., $16.8 \mathrm{mg}, 35 \mu \mathrm{~mol}$) in DMF ($500 \mu \mathrm{~L}$) at room temperature was added a bright yellow solution of $\mathrm{Cu}^{(1)}$ prepared by mixing 0.1 M aq . $\mathrm{CuSO}_{4}(10 \mathrm{~mol} \%, 14 \mu \mathrm{~L}, 1.4 \mu \mathrm{~mol}$), 0.2 M aq. sodium ascorbate ($20 \mathrm{~mol} \%, 14 \mu \mathrm{~L}, 2.8 \mu \mathrm{~mol}$) and 1 M aq. sodium bicarbonate (1 eq., 14 $\mu \mathrm{L}, 14 \mu \mathrm{~mol})$ with $\mathrm{H}_{2} \mathrm{O}(58 \mu \mathrm{~L})$. The mixture was stirred at room temperature for 2 h , but low conversion was assessed by TLC. An excess of 1 M aq. sodium bicarbonate (10 eq., $141 \mu \mathrm{~L}, 141$ $\mu \mathrm{mol}$) was added, causing a gas release. To ensure reaction rate, another portion of 0.1 M aq . $\mathrm{CuSO}_{4}(35 \mathrm{~mol} \%, 49 \mu \mathrm{~L}, 4.9 \mu \mathrm{~mol})$ and 0.2 M aq. sodium ascorbate ($70 \mathrm{~mol} \%, 49 \mu \mathrm{~L}, 98 \mu \mathrm{~mol}$) were added. The mixture was stirred at room temperature for 5 min . The reaction was then quenched with 10 drops of ammonia and then filtered through a small silica gel pad (2 cm high, 0.5 cm) built in a Pasteur pipet, eluting with a $9.5 / 9.5 / 1$ mixture of $\mathrm{MeCN} / \mathrm{MeOH} / a m m o n i u m$ hydroxide (10 mL). The filtrate was concentrated, then diluted with water (4 mL), frozen and lyophilized. The dry residue was purified by HPLC using semi-preparative column eluted with 0$30 \%$ acetonitrile (0.1% formic acid) in water 0.1% formic acid) at a flow rate of $2 \mathrm{~mL} / \mathrm{min}$ (retention time $=19.0 \mathrm{~min}$) to afford pure $4(6.1 \mathrm{mg}, 65 \%$ yield). ESI-HRMS (TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]-662.2352$; calc. 662.2346 for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{O}_{8}{ }^{10} \mathrm{BF}_{3}$.

Compound 4 (QC)

Supplemental Figure 6 - HPLC trace of pure 4.

Conditions: a. (i) 20% piperidine/DMF (v/v), rt, 30 min ; (ii) Fmoc-tranexamic acid, HBTU, DIPEA, rt, 2 h ; b. (i) 20% piperidine/DMF (v/v), rt, 30 min ; (ii) Fmoc-dPEG2, HBTU, DIPEA, rt, 2 h ; c. (i) 20\% piperidine/DMF (v/v), rt, 30 min ; (ii) Fmoc-dPEG2; Fmoc-Lys(Fmoc)-OH; Fmoc-Glu(OtBu)OH, HBTU, DIPEA, rt, 2 h ; d. (i) 20\% piperidine/DMF (v/v), rt, 30 min ; (ii) azidoacetic acid (5 eq.), DCC (5 eq.), NHS (6 eq.), rt, 2 h ; e. TFA/TIS 95:5 (v/v), rt, 2 h.

Synthesis of 21

Resin-bound 21 was synthesized on solid phase by following reported procedures.(8)

Synthesis of 22

After Fmoc deprotection of 21, Fmoc-protected tranexamic acid was coupled to the N -terminus according to a reported procedure.(8) After Fmoc deprotection, 2-azidoacetic acid (5 equivalents)
was coupled to the N-terminus using the in situ activating reagent N, N^{\prime}-diisopropylcarbodiimide (5 eq.) and N-hydroxysuccinimide (6 eq.) in DMF for 2 h at room temperature. At the end, the peptide was deprotected and simultaneously cleaved from the resin by treating the beads with a TFA/TIS 95:5 (v / v) mixture for 2 h at room temperature. After filtration, the peptide was precipitated by the addition of cold diethyl ether to the TFA solution. The crude peptide was purified by HPLC using a semi-preparative column eluted with $35-45 \%$ acetonitrile (0.1% TFA) in water $(0.1 \%$ TFA) at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. Collection of the peak with a retention time of 9.1 min afforded 22 in 25% yield. MS (ESI): calculated for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}=739.80$; observed $[\mathrm{M}+\mathrm{H}]^{+}=740.26$.

Synthesis of 23

After Fmoc deprotection of 21, Fmoc-protected dPEG ${ }_{2}$ acid was coupled to the N-terminus using standard solid-phase peptide synthesis. The Fmoc protecting group was removed and 2azidoacetic acid (5 equivalents) was coupled to the N-terminus with the in situ activating reagent N, N '-diisopropylcarbodiimide (5 equivalents) and N-hydroxysuccinimide (6 equivalents) in DMF for 2 h at room temperature. At the end, the peptide was deprotected and simultaneously cleaved from the resin by treating with 95/5 TFA/TIS for 2 h at room temperature. After filtration, the peptide was precipitated by the addition of cold diethyl ether to the TFA solution. The crude peptide was purified by HPLC using the semi-preparative column eluted with 31-40 \% acetonitrile (0.1% TFA) in water at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. The retention time was 9.8 min , and the yield of the peptide 23 was 35.5%. MS (ESI): calculated for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{12}[\mathrm{M}+\mathrm{H}]^{+}=759.33$; observed $[\mathrm{M}+\mathrm{H}]^{+}=$ 759.50.

Synthesis of 24

After Fmoc deprotection of 21, Fmoc-protected tranexamic acid was coupled to the N-terminus followed by Fmoc-Lys(Fmoc)-OH and Fmoc-Glu(OtBu)-OH via solid-phase peptide synthesis using Fmoc-based chemistry. After Fmoc deprotection, 2-azidoacetic acid (5 equivalents) was coupled to the N-terminus using the in situ activating reagent N, N-diisopropylcarbodiimide (5 eq .) and N -hydroxysuccinimide (6 eq.) in DMF for 2 h at room temperature. At the end, the peptide was deprotected and simultaneously cleaved from the resin by treating the beads with a TFA/TIS 95:5 (v/v) mixture for 2 h at room temperature. After filtration, the peptide was precipitated by the addition of cold diethyl ether to the TFA solution. The crude peptide was purified by HPLC using a semi-preparative column eluted with 33% acetonitrile (0.1% TFA) in water (0.1% TFA) at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. Collection of the peak with a retention time of 10.1 min afforded $\mathbf{2 2}$ in 39% yield. MS (ESI): calculated for $\mathrm{C}_{53} \mathrm{H}_{73} \mathrm{~N}_{15} \mathrm{O}_{18}[\mathrm{M}+\mathrm{H}]^{+}=1208.53$; observed $[\mathrm{M}+\mathrm{H}]^{+}=1208.68$.

Conditions: a. AMBF_{3} or pyrBF_{3} (2-5 eq.), CuSO_{4} (cat.), Na ascorbate (cat.), $\mathrm{NH}_{4} \mathrm{OH}$, $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 45^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Synthesis of 5

A solution of 22 ($3.8 \mathrm{mg}, 5 \mu \mathrm{~mol}$), N-propargyl- N, N-dimethyl-ammoniomethyltrifluoroborate (4 mg , $24.2 \mu \mathrm{~mol}), 1 \mathrm{M} \mathrm{CuSO}_{4}(25 \mu \mathrm{~L})$, and 1 M sodium ascorbate $(70 \mu \mathrm{~L})$ in acetonitrile ($150 \mu \mathrm{~L}$) and 5 $\% \mathrm{NH}_{4} \mathrm{OH}(150 \mu \mathrm{~L})$ was incubated at $45^{\circ} \mathrm{C}$ oil bath for 2 h . The reaction mixture was purified by HPLC using the semi-preparative column eluted with 21% acetonitrile and 79% ammonia formate buffer ($40 \mathrm{mM}, \mathrm{pH} 6.0$) at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. The yield of the peptide was 84%. MS (ESI): calculated for $\mathrm{C}_{41} \mathrm{H}_{57} \mathrm{BF}_{3} \mathrm{~N}_{9} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}=904.44$; observed $[\mathrm{M}+\mathrm{H}]^{+}=904.60$.

Compound 5 (QC)

Supplemental Figure 7 - HPLC trace of pure 5.

Synthesis of 6

A solution of 22 ($2.5 \mathrm{mg}, 3.4 \mu \mathrm{~mol}$), N-propargyl-para-pyridiniumtrifluoroborate ($1.3 \mathrm{mg}, 6.8 \mu \mathrm{~mol}$), $1 \mathrm{M} \mathrm{CuSO}_{4}(25 \mu \mathrm{~L})$, and 1 M sodium ascorbate $(70 \mu \mathrm{~L})$ in acetonitrile ($150 \mu \mathrm{~L}$) and $5 \% \mathrm{NH}_{4} \mathrm{OH}$ $(150 \mu \mathrm{~L})$ was incubated at $45^{\circ} \mathrm{C}$ oil bath for 2 h . The reaction mixture was purified by HPLC using the semi-preparative column eluted with a gradient of acetonitrile and formate buffer ($40 \mathrm{mM}, \mathrm{pH}$ 6.0) at a flow rate of $2 \mathrm{~mL} / \mathrm{min}$ to afford the peptide with 45% yield. ESI-HRMS (TOF) $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]^{-}$ 921.3918; calc. 921.3919 for $\mathrm{C}_{43} \mathrm{H}_{52} \mathrm{BF}_{3} \mathrm{~N}_{9} \mathrm{O}_{10}$.

Supplemental Figure 8 - HPLC trace of pure 6.

Conditions: $\mathrm{a} . \mathrm{AMBF}_{3}$ or pyrBF_{3} (3.5 eq.), CuSO_{4} (cat.), Na ascorbate (cat.), $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$, $45^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Synthesis of 7

A solution of 23 ($10.5 \mathrm{mg}, 0.014 \mathrm{mmol}$), N -propargyl $-\mathrm{N}, \mathrm{N}$-dimethyl-ammoniomethyltrifluoroborate $(8.0 \mathrm{mg}, 48.6 \mu \mathrm{~mol}), 1 \mathrm{M} \mathrm{CuSO}_{4}(30 \mu \mathrm{~L})$, and 1 M sodium ascorbate $(72 \mu \mathrm{~L})$ in acetonitrile (100 $\mu \mathrm{L})$ and $5 \% \mathrm{NH}_{4} \mathrm{OH}(100 \mu \mathrm{~L})$ was incubated at $45^{\circ} \mathrm{C}$ oil bath for 2 h . The reaction mixture was purified by HPLC using the semi-preparative column eluted with 20% acetonitrile and 80% ammonia formate buffer ($40 \mathrm{mM}, \mathrm{pH} 6.0$) at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. The yield of the peptide was 50.0%. MS (ESI): calculated for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{BF}_{3} \mathrm{~N}_{9} \mathrm{O}_{12}[\mathrm{M}+\mathrm{Na}]^{+}=946.41$; observed $[\mathrm{M}+\mathrm{Na}]^{+}=946.60$.

Compound 7 (QC)

Supplemental Figure 9 - HPLC trace of pure 7.

Conditions: $\mathrm{a} . \mathrm{AMBF}_{3}$ (6 eq.), CuSO_{4} (cat.), Na ascorbate (cat.), $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 45^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Synthesis of 8

A solution of 24 ($6.0 \mathrm{mg}, 5.0 \mu \mathrm{~mol}$), N -propargyl- N, N-dimethyl-ammoniomethyltrifluoroborate (4.9 $\mathrm{mg}, 30.0 \mu \mathrm{~mol}), 1 \mathrm{M} \mathrm{CuSO} 4(37.5 \mu \mathrm{~L})$, and 1 M sodium ascorbate $(94 \mu \mathrm{~L})$ in acetonitrile ($150 \mu \mathrm{~L}$) and $5 \% \mathrm{NH}_{4} \mathrm{OH}(150 \mu \mathrm{~L})$ was incubated at $45^{\circ} \mathrm{C}$ oil bath for 2 h . The reaction mixture was purified by HPLC using the semi-preparative column eluted with 15% acetonitrile and 85% ammonia formate buffer ($40 \mathrm{mM}, \mathrm{pH} 6.0$) at a flow rate of $4.5 \mathrm{~mL} / \mathrm{min}$. The yield of the peptide was 56.0%. MS (ESI): calculated for $\mathrm{C}_{65} \mathrm{H}_{95} \mathrm{~B}_{2} \mathrm{~F}_{6} \mathrm{~N}_{17} \mathrm{O}_{18}[\mathrm{M}+\mathrm{H}]^{+}=1538.72$; observed $[\mathrm{M}+\mathrm{H}]^{+}=1538.88$.

Compound 8 (QC)

Supplemental Figure 10 - HPLC trace of pure 8.

QC ANALYSIS OF TRACERS [$\left.{ }^{18} \mathrm{~F}\right] 1-8$

Supplemental Figure 11-QC analysis of [$\left.{ }^{18} \mathrm{~F}\right]$ 1.

Supplemental Figure 12-QC analysis of $\left[{ }^{18} \mathrm{~F}\right] 2$.

Supplemental Figure 13 - QC analysis of [$\left.{ }^{18} \mathrm{~F}\right] 3$.

Supplemental Figure 14-QC analysis of $\left[{ }^{18} \mathrm{~F}\right] 4$.

Supplemental Figure 15-QC analysis of $\left[{ }^{18} \mathrm{~F}\right] 5$.

Supplemental Figure 16-QC analysis of $\left[{ }^{18} \mathrm{~F}\right] 6$.

Supplemental Figure 17-QC analysis of [$\left.{ }^{18} \mathrm{~F}\right] 7$.

Supplemental Figure 18-QC analysis of $\left[{ }^{18} \mathrm{~F}\right] 8$.

1. Liu ZB, Pourghiasian M, Benard F, Pan JH, Lin KS, Perrin DM. Preclinical Evaluation of a High-Affinity F-18-Trifluoroborate Octreotate Derivative for Somatostatin Receptor Imaging. Journal of Nuclear Medicine. 2014;55:1499-1505.
2. Pourghiasian M, Liu ZB, Pan JH, et al. F-18-AmBF3-MJ9: A novel radiofluorinated bombesin derivative for prostate cancer imaging. Bioorganic \& Medicinal Chemistry. 2015;23:1500-1506.
3. Maresca KP, Hillier SM, Femia FJ, et al. A Series of Halogenated Heterodimeric Inhibitors of Prostate Specific Membrane Antigen (PSMA) as Radiolabeled Probes for Targeting Prostate Cancer. Journal of Medicinal Chemistry. 2009;52:347-357.
4. Horiuchi T, Chiba J, Uoto K, Soga T. Discovery of novel thieno[2,3-d]pyrimidin-4-yl hydrazone-based inhibitors of Cyclin D1-CDK4: Synthesis, biological evaluation, and structureactivity relationships. Bioorganic \& Medicinal Chemistry Letters. 2009;19:305-308.
5. Zhou Z, Fahrni CJ. A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: Modulation of the fluorescence emission via (3)(n, pi*)-(1)(pi,pi*) inversion. Journal of the American Chemical Society. 2004;126:8862-8863.
6. Bouvet V, Wuest M, Jans H-S, et al. Automated synthesis of [18F]DCFPyL via direct radiofluorination and validation in preclinical prostate cancer models. EJNMMI Research. 2016;6:40.
7. Mukherjee S, van der Donk WA. Mechanistic Studies on the Substrate-Tolerant Lanthipeptide Synthetase ProcM. Journal of the American Chemical Society. 2014;136:1045010459.
8. Benešová M, Schäfer M, Bauder-Wüst U, et al. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. Journal of Nuclear Medicine. 2015;56:914-920.
