1. Synthesis and characterization of the radiolabeling precursor for ${ }^{11} \mathrm{C}$-EKAP and EKAP

1.1 General Information

All reagents and solvents were obtained from commercial sources (Sigma-Aldrich, VWR and Fisher Scientific) and used without further purification unless noted otherwise. Proton and carbon nuclear magnetic resonance $\left({ }^{1} \mathrm{H}\right.$ and ${ }^{13} \mathrm{C}$ NMR) spectra were recorded on an Agilent ${ }^{\mathrm{TM}} 400 \mathrm{MHz}$ or 600 MHz NMR spectrometer. Chemical shifts are reported in parts per million, with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}\right.$; DMSO- d_{6} : 2.49 ppm in ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}$; DMSO- $d_{6}: 39.7 \mathrm{ppm}$ in ${ }^{13} \mathrm{C}$ NMR). Multiplicities are indicated as s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet); coupling constants J are given in hertz (Hz). Melting point was determined on an Electrothermal ${ }^{\text {TM }}$ Mel-Temp instrument. High resolution mass spectrometry was run on a 9.4T Bruker Qe FT-ICR MS system. Chiral-HPLC was performed with a Varian Prostar system including a Prostar 210 pump and a Prostar 325 UV detector at 254 nm wavelength. All chemicals used were of $\geq 95 \%$ purity, based on HPLC, LC-MS, or NMR.
1.2 Synthesis and characterization of the radiolabeling precursor $((S)-\mathbf{1 1})$

Benzylglycine (1) was protected with Boc-anhydride, followed by a coupling amidation with serine methyl ester (3) to afford compound 4. It was treated with SOCl_{2} and cyclized to produce the piperazinedione (5), which was then reduced to piperazine (6) using LiAlH_{4}. Coupling of compound 6 and dichlorophenylacetic acid (7) led to compound

8, which was oxidized through Swern oxidation to provide aldehyde (9). Compound 9 inevitably racemized when triethylamine was used in the oxidation reaction. The racemic aldehyde then underwent a reductive amination with diethylamine, followed by cleavage of the benzyl protecting group to afford racemic compound $\mathbf{1 1}$.

N -Benzyl-N-(tert-butoxycarbonyl)glycine (2): To a suspension of N -benzylglycine hydrochloride $(\mathbf{1}, 10.17 \mathrm{~g}, 50.43 \mathrm{mmol})$ and $(\mathrm{Boc})_{2} \mathrm{O}(13.58 \mathrm{~g}, 60.36 \mathrm{mmol})$ in deionized (DI) water (150 mL) was added triethylamine (TEA, $14.1 \mathrm{~mL}, 101.09 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 h , and quenched with $12 \mathrm{~N} \mathrm{HCl}(3.70 \mathrm{~mL}, 151.29$ mmol) until the pH of the mixture reached 2. The mixture was extracted with EtOAc (100 $\mathrm{mL} \times 3$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford compound 2 as a white solid $(11.1 \mathrm{~g}, 83 \%)$ in a $\sim 1: 1$ mixture of two rotamers, which was used in the next step of synthesis without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz})$: Rotamer A: $\delta 1.48(\mathrm{~s}, 9 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 4.55($ rotamer B, $\mathrm{s}, 1 \mathrm{H}), 4.51$ (rotamer A, $\mathrm{s}, 1 \mathrm{H}$), 7.17-7.38 (m, 5H), 9.30 (br s, 1H). M.P. 103-104 ${ }^{\circ} \mathrm{C}$.

Methyl N-benzyl-N-(tert-butoxycarbonyl)glycyl-D-serinate (4): To a solution of compound $2(11.10 \mathrm{~g}, 41.84 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added $1,1^{\prime}-$ carbonyldiimidazole (CDI, $6.78 \mathrm{~g}, 41.84 \mathrm{mmol}$) at room temperature under argon. The solution was stirred at room temperature for 1 h and then added slowly via a cannula to a pre-cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of D-serine methyl ester hydrochloride $(\mathbf{3}, 6.51 \mathrm{~g}, 41.84 \mathrm{mmol})$ and TEA ($5.8 \mathrm{~mL}, 41.84 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The mixture was stirred at room temperature for 16 h and washed with saturated NaHCO_{3} solution $(80 \mathrm{~mL} \times 3)$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was
purified on a silica gel column eluting with $30-60 \%$ acetone/hexanes to afford compound 4 as a white solid ($6.1 \mathrm{~g}, 48 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.50(\mathrm{~s}, 9 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 3.82-3.94 (m, 2H), 4.45 (br s, 1H), 4.54-4.70 (m, 2H), 7.19-7.39 (m, 5H). M.P. 105-107 ${ }^{\circ} \mathrm{C}$.
(R)-1-Benzyl-3-(hydroxymethyl)piperazine-2,5-dione (5): To a solution of compound $4(6.1 \mathrm{~g}, 16.6 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(60 \mathrm{~mL})$ under argon was dropwise added $\mathrm{SOCl}_{2}(6.1 \mathrm{~mL}, 83.2 \mathrm{mmol})$. The mixture was stirred at room temperature for 4 h and concentrated in vacuo. The resulting solid was washed with $\mathrm{Et}_{2} \mathrm{O}(18 \mathrm{~mL} \times 2)$, redissolved in a mixture of MeOH and $\mathrm{NH}_{4} \mathrm{OH}(1: 1, v / v, 60 \mathrm{~mL})$ and stirred for 16 h . The mixture was concentrated in vacuo, and the crude product was purified on a silica gel column eluting with $10 \% \mathrm{THF} /$ hexanes to afford compound $\mathbf{5}$ as a white solid ($4.0 \mathrm{~g}, 80 \%$), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 3.69-3.78(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 2 \mathrm{H}), 3.99-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.59$ $(\mathrm{d}, J=14.89 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=14.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 5 \mathrm{H})$. M.P. $183-186^{\circ} \mathrm{C}$.
(S)-(4-Benzylpiperazin-2-yl)methanol (6): To a solution of compound 5 ($4.0 \mathrm{~g}, 17.1$ mmol) in anhydrous THF (60 mL) under argon was dropwise added a solution of LiAlH_{4} ($14.2 \mathrm{~mL}, 2.4 \mathrm{M}$ in THF). The mixture was heated to reflux for 2 h , cooled to room temperature and quenched sequentially with DI water (1.3 mL) , NaOH solution (3.9 mL , 2 M), and DI water (1.3 mL). The suspension was filtered, and the filtrate was concentrated in vacuo. The crude product was purified on a silica gel column eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}(200: 10: 1)$ to give compound $\mathbf{6}$ as yellow oil $(2.5 \mathrm{~g}, 71 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.88(\mathrm{t}, J=10.28 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.71$
$(\mathrm{d}, J=10.99 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.97-3.02(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=5.55 \mathrm{~Hz}, 2 \mathrm{H})$, 3.52-3.58 (m, 2H), 7.23-7.27(m, 1H), $7.34(\mathrm{~d}, J=3.90 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 2 \mathrm{H})$.
(S)-1-(4-Benzyl-2-(hydroxymethyl)piperazin-1-yl)-2-(3,4-dichlorophenyl)ethan-1one (8): To a solution of compound $7(1.95 \mathrm{~g}, 9.5 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under argon was added CDI ($1.54 \mathrm{~g}, 9.5 \mathrm{mmol}$). The solution was stirred at room temperature for 1 h and added slowly via a cannula to a pre-cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of compound $6(1.96 \mathrm{~g}, 95 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 16 h and washed with saturated NaHCO_{3} solution (30 mL $\times 3$). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified on a silica gel column eluting with 40-70\% EtOAc/hexanes to afford compound $\mathbf{8}$ as a white solid ($1.77 \mathrm{~g}, 37 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.93-2.29(\mathrm{~m}$, $2 H), 2.75-3.10,(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.67$ (rotamer B, s, 1.2H), 3.72 (rotamer A, s, 0.8 H), 3.88 (br s, 1 H), 3.75-4.10 (m, 2H), 4.37-4.45 (rotamer A, m, 0.4H), 4.56-4.62 (rotamer B, m, 0.6 H), 7.07 (dd, $J=2.15,8.28 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24-7.42 (m, 7H). M.P. 144-145 ${ }^{\circ} \mathrm{C}$.

4-Benzyl-1-(2-(3,4-dichlorophenyl)acetyl)piperazine-2-carbaldehyde (9): To a solution of oxalyl chloride ($0.46 \mathrm{~mL}, 5.39 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ under argon and cooled to $-78^{\circ} \mathrm{C}$ was dropwise added a solution of DMSO $(0.64 \mathrm{~mL}, 8.98 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, followed by a solution of compound $\mathbf{8}(1.77 \mathrm{~g}, 4.49 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. TEA ($2.5 \mathrm{~mL}, 17.96 \mathrm{mmol}$) was added after 30 min , and the mixture was stirred for another 15 min , then slowly warmed to $0^{\circ} \mathrm{C}$. The reaction was quenched with DI water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 2)$. The combined organic phase was
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified on a silica gel column eluting with $30-50 \%$ EtOAc/hexanes to afford compound 9 as a yellow solid $(0.9 \mathrm{~g}, 51 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.05(\mathrm{td}, J=3.42,11.71 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}$, $J=4.27,12.04 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=11.80 \mathrm{~Hz}, 1 \mathrm{H}), 3.0(\mathrm{~d}, 1 \mathrm{H}), 3.33(\mathrm{td}, J=3.52,12.47$ $\mathrm{Hz}, 1 \mathrm{H}), 3.43(\mathrm{dt}, J=2.01,11.97 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.61(3 \mathrm{H}, \mathrm{m}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 5.11-5.15(\mathrm{~m}$, $1 \mathrm{H}), 7.13(\mathrm{dd}, J=1.83,8.26 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.43(\mathrm{~m}, 7 \mathrm{H}), 9.45(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{M.P} .144-145{ }^{\circ} \mathrm{C}$.

1-(4-Benzyl-2-((diethylamino)methyl)piperazin-1-yl)-2-(3,4-dichlorophenyl)ethan-1-one (10): To a solution of compound $9(0.33 \mathrm{~g}, 0.84 \mathrm{mmol})$ in anhydrous 1,2-dichloroethane (13 mL) under argon were added 3A molecular sieves (0.30 $\mathrm{g})$ and diethylamine (DEA, $0.25 \mathrm{~g}, 2.52 \mathrm{mmol})$, followed by $\mathrm{AcOH}(0.14 \mathrm{~mL}, 2.52 \mathrm{mmol})$. After stirring for $30 \mathrm{~min}, \mathrm{NaBH}(\mathrm{OAc})_{3}(0.53 \mathrm{~g}, 2.52 \mathrm{mmol})$ was added in three portions and the reaction mixture was kept stirring for 16 h . The reaction was quenched with saturated NaHCO_{3} solution until the pH reached 8.0, then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times$ 3). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified on a silica gel column eluting with $20-30 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford compound 10 as pale yellow oil $(0.34 \mathrm{~g}, 90 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.90$ $(\mathrm{t}, J=7.06 \mathrm{~Hz}, 6 \mathrm{H}), 1.77-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.08 \mathrm{~Hz}, 4 \mathrm{H}), 2.45-3.00(\mathrm{~m}, 5 \mathrm{H}), 3.30-$ 3.45 (m, 3H), 3.58 (s, 1H), 3.67 (d, $J=2.96 \mathrm{~Hz}, 1 \mathrm{H}$), 4.34-4.36 (rotamer A, m, 0.5H), 4.534.55 (rotamer B, m, 0.5H), 7.01 (dd, $J=8.32,13.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.32$ (m, 2H).

2-(3,4-Dichlorophenyl)-1-(2-((diethylamino)methyl)piperazin-1-yl)ethan-1-one (11): Compound $\mathbf{1 0}(0.42 \mathrm{~g}, 0.90 \mathrm{mmol})$ was dissolved in a mixture of THF and DI water
$(1: 1, v / v, 8 \mathrm{~mL})$ and degassed with argon for 10 min . To this solution were added 12 N HCl $(0.8 \mathrm{~mL})$ and $5 \% \mathrm{Pd} / \mathrm{C}$ powder $(0.60 \mathrm{~g})$. The resulting suspension was stirred under an atmosphere of hydrogen at room temperature for 3 h . The mixture was filtered through Celite, and the filtrate was concentrated in vacuo. The residue was diluted with DI water, basified with $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified on a silica gel column eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}$ (200-100:10:1) to afford the racemic compound $\mathbf{1 1}$ as colorless oil $(0.20 \mathrm{~g}, 76 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 0.94(\mathrm{t}, 6 \mathrm{H}), 2.46(\mathrm{q}, J=6.91 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-3.16(\mathrm{~m}, 9 \mathrm{H}), 3.61(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, $1 \mathrm{H}), 3.38-3.72(\mathrm{~m}, 1 \mathrm{H}), 4.36$ (rotamer A, m, 0.5H), 4.56 (rotamer B, m, 0.5H), 7.01 (dd, J $=7.96,17.43 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.15 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}, 151\right.$ MHz): $\delta 169.35,168.51,135.99,135.49,132.36,130.89,130.77,130.32,130.28,128.56$, $128.52,128.45,128.38,126.55,53.32,52.92,51.09,47.69$ (2C), 47.49, 47.35 (2C), 47.26, 46.16, 46.14, 45.98, 43.13, 39.89, 39.29, 38.24, 12.01(2C), 11.83 (2C); HRMS: calculated for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 358.1447$; found, 358.1446.
$(R)-\quad$ and $\quad(S)$-2-(3,4-Dichlorophenyl)-1-(2-((diethylamino)methyl)piperazin-1-yl)ethan-1-one $((R)$-11 and $(S)-\mathbf{1 1})$: Resolution of the two enantiomers was conducted on a Chiralcel OD semi-preparative column ($10 \mu \mathrm{~m}, 10 \times 250 \mathrm{~mm}$). Compound $11(0.20 \mathrm{~g}$, $0.56 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}(2.0 \mathrm{~mL})$ and $50 \mu \mathrm{~L}$ of the solution was injected in each run. Mobile phase: $40 / 60{ }^{i} \mathrm{PrOH} /$ hexanes, flow rate: $4 \mathrm{~mL} / \mathrm{min}$, the first compound eluting out from the column was (S)-11, with retention time of 5.72 min , while the second
compound was $(R) \mathbf{- 1 1}$, with retention time of 11.55 min . Both enantiomers were isolated in $>95 \%$ enantiomeric excess (ee).
1.3 Synthesis and characterization of EKAP (12) and its fumarate salt (13)

Methyl (R)-4-(2-(3,4-dichlorophenyl)acetyl)-3-((diethylamino)methyl)piperazine-1-carboxylate (12): To a solution of compound (S)-11 (0.13 g, 0.36 mmol$)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ under argon and cooled to $0{ }^{\circ} \mathrm{C}$ was added methyl chloroformate (0.14 $\mathrm{mL}, 1.80 \mathrm{mmol})$, followed by TEA $(0.10 \mathrm{~mL}, 0.72 \mathrm{mmol})$. The reaction mixture was warmed to room temperature and stirred for 16 h , then quenched with DI water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL} \times 2)$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified on a silica gel column eluting with $2-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford compound $\mathbf{1 2}$ as colorless oil $(0.12 \mathrm{~g}, 80 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 7.36-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.54(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.36$ $(\mathrm{m}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=13.38 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=13.19 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.65$ $(\mathrm{s}, 3 \mathrm{H}), 3.53-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=4.0213 .35 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.41$ (m, 4H), $0.91(\mathrm{t}, J=6.94 \mathrm{~Hz}, 6 \mathrm{H})$.

Methyl (R)- and (S)-4-(2-(3,4-dichlorophenyl)acetyl)-3-((diethylamino)methyl) piperazine-1-carboxylate fumarate (13): To a solution of compound $\mathbf{1 2}$ ($0.12 \mathrm{~g}, 0.29 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(0.6 \mathrm{~mL})$ was added a solution of fumaric acid $(0.035 \mathrm{~g}, 0.30 \mathrm{mmol})$ in MeOH $(0.07 \mathrm{~mL})$. The white precipitate was collected through filtration and recrystallized in $\mathrm{Et}_{2} \mathrm{O}$ to afford compound 13 as a white solid ($0.095 \mathrm{~g}, 61 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d6, 400 MHz): $\delta 0.89(\mathrm{t}, J=6.82 \mathrm{~Hz}, 6 \mathrm{H}), 2.20-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.46\left(\mathrm{~m}, 4 \mathrm{H}\right.$ overlap with $\mathrm{H}_{2} \mathrm{O}$ peak in

DMSO), 2.70-2.79 (m,1H), 2.81-2.97 (m, 2H), 3.58 (s, 3H), 3.67-3.95 (m, 4H), 3.95-4.05 $(\mathrm{m}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.33 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=8.24 \mathrm{~Hz}, 1 \mathrm{H}), 13.02(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}\right): \delta 173.08$ (2C), $170.57,157.78,136.93,136.02$ (2C), 133.22, 132.72, 131.92, 131.54, 130.59, 53.68 (2C), $52.64,47.00,44.60,42.32(2 \mathrm{C}), 40.06$ (2C), 8.95 (2C). M.P. $137^{\circ} \mathrm{C} .[\alpha]^{22} \mathrm{D}=-32.32^{\circ}(c=$ $\left.0.5, \mathrm{H}_{2} \mathrm{O}\right)$. Compound $\mathbf{1 3}$ was assigned the R-configuration based on the result of negative rotation, in reference to the lead compound GR103545 (R-enantiomer), which has an optical rotation of $[\alpha]^{22} \mathrm{D}=-25.60^{\circ}\left(c=0.5, \mathrm{H}_{2} \mathrm{O}\right)$. HRMS: calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right), 416.1502$; found, 416.1504 .
1.4 Synthesis and characterization of (S)-enantiomer (14) and its fumarate salt (15)

Methyl (S)-4-(2-(3,4-dichlorophenyl)acetyl)-3-((diethylamino)methyl)piperazine-1-carboxylate (14): Compound 14 was prepared in procedures similar to those described above for compound $\mathbf{1 2}$ using $(R)-\mathbf{1 1}$ as the starting material. Yield: $80 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta 0.93(\mathrm{t}, J=6.91 \mathrm{~Hz}, 6 \mathrm{H}), 2.42-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{dd}, J=3.72$, $13.37 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.75(\mathrm{~m}, 3 \mathrm{H}), 4.11(\mathrm{~d}, J=13.66 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16(\mathrm{~d}, J=13.45 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H})$.

Methyl (S)-4-(2-(3,4-dichlorophenyl)acetyl)-3-((diethylamino)methyl)piperazine-1-carboxylate fumarate (15): Compound $\mathbf{1 5}$ was prepared in procedures similar to those described above for compound 13. Yield: 61%. ${ }^{1} \mathrm{H}$ NMR (MeOD, 400 MHz$): \delta 1.22(\mathrm{t}, J$ $=7.21 \mathrm{~Hz}, 6 \mathrm{H}), 3.05-3.23(\mathrm{~m}, 6 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75-4.09(\mathrm{~m}, 8 \mathrm{H}), 4.89(\mathrm{~m}, 1 \mathrm{H}$ overlap
with $\mathrm{H}_{2} \mathrm{O}$ peak in MeOD), $6.70(\mathrm{~s}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=1.98,8.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.98$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.29 \mathrm{~Hz}, 1 \mathrm{H}) .[\alpha]^{22} \mathrm{D}=32.00^{\circ}\left(c=0.05, \mathrm{H}_{2} \mathrm{O}\right)$.
2. Radiosynthesis of ${ }^{11} \mathrm{C}$-EKAP

2.1 General information

The semi-preparative HPLC system includes a Shimadzu ${ }^{\text {TM }}$ LC-20A pump, a Knauer K200 UV detector, and a Bioscan γ-flow detector. The analytical HPLC system include a Shimadzu ${ }^{\text {TM }}$ LC-20A pump, a Shimadzu ${ }^{\text {TM }}$ SPD-M20A PDA or SPD-20A UV detector, and a Bioscan γ-flow detector. ${ }^{11} \mathrm{C}$-Carbon dioxide was produced via the ${ }^{14} \mathrm{~N}(\mathrm{p}, \alpha){ }^{11} \mathrm{C}$ nuclear reaction with the PETtrace cyclotron (GE Medical Systems) using 16.5 MeV proton irradiation of nitrogen gas containing 0.5% oxygen. Waters Classic C18 SepPak cartridges were purchased from Waters Associates.
${ }^{11}$ C-EKAP was synthesized from the secondary amine precursor $((S)$ - 11), which was pre-treated with CO_{2} to provide the carbamate intermediate in the presence of cesium carbonate $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}\right)$ and tetrabutylammonium triflate (TBAOTf) in DMF, followed by reaction with ${ }^{11} \mathrm{C}$-MeOTf, in a procedure similar to the radiosynthesis of ${ }^{11} \mathrm{C}$-GR103545 (1).
2.2 Pre-treatment of the precursor $((S)-\mathbf{1 1})$

To the solution of compound $(S) \mathbf{- 1 1}(1 \mathrm{mg})$ in anhydrous DMF $(0.3 \mathrm{~mL})$ were added TBAOTf $(2.0 \mathrm{mg})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mg})$. The mixture was sonicated for 1 min and bubbled
with CO_{2} at $25 \mathrm{~mL} / \mathrm{min}$ for 5 min . This CO_{2} pre-treated solution of the precursor in DMF is ready to use.

2.3 Radiosynthesis of ${ }^{11} \mathrm{C}$-EKAP

The cyclotron produced ${ }^{11} \mathrm{C}-\mathrm{CO}_{2}$ was reacted with hydrogen at $400{ }^{\circ} \mathrm{C}$ under a nickel catalyst to afford ${ }^{11} \mathrm{C}-\mathrm{CH}_{4}$, which was converted to ${ }^{11} \mathrm{C}-\mathrm{CH}_{3} \mathrm{I}$ by a gas phase reaction with iodine (2). ${ }^{11} \mathrm{C}-\mathrm{CH}_{3} \mathrm{I}$ was swept through the silver triflate column at $190{ }^{\circ} \mathrm{C}$ in an FxC module $(3,4)$ and the resulting ${ }^{11} \mathrm{C}-\mathrm{CH}_{3} \mathrm{OTf}$ was bubbled into the CO_{2} pre-treated solution of the precursor in DMF until activity peaked. The reaction mixture was heated at $45{ }^{\circ} \mathrm{C}$ for 5 min , cooled to room temperature, diluted with 1.5 mL of 0.1 M ammonium formate solution and injected onto the semi-preparative HPLC column (Gemini C18, $10 \mu \mathrm{~m}, 10 \times$ 250 mm). The column was eluted with a mobile phase of $37 \% \mathrm{MeCN}$ and $63 \% 0.1 \mathrm{M}$ ammonium formate solution at a flow rate of $5 \mathrm{~mL} / \mathrm{min}$. The radioactivity fraction eluting between 11-12 min was collected, diluted with 50 mL of DI water containing 400 mg of United States Pharmacopeia (USP) grade ascorbic acid, and loaded onto a Waters Classic C18 SepPak cartridge. The SepPak was rinsed with 10 mL of 1 mM HCl and dried, then eluted with 1 mL of USP absolute ethanol (Pharmco-AAPER) followed by a solution of 3 mg of USP ascorbic acid in 3 mL of USP saline (American Regent). The resulting solution was passed through a sterile $0.22 \mu \mathrm{~m}$ membrane filter (13 mm , Millipore MILLEX GV) into a sterile dose vial containing a mixture of 7 mL USP saline, 7 mg of USP ascorbic acid and $200 \mu \mathrm{~L}$ of 4.2% USP NaHCO_{3} (Abraxis). The inactive (S)-enantiomer was synthesized in similar procedures.
3. Plasma metabolite analysis and input function measurement

3.1 Method

Arterial blood samples were collected at preselected time points and assayed for radioactivity in whole blood and plasma with gamma counters (Wizard 1480/2480, Perkin Elmer, Waltham, MA, USA). Six samples, drawn at $0,5,15,30,60$ and 90 min, were processed and analyzed to measure the radiotracer metabolite profile by HPLC using the column-switching method (5). Whole blood samples in EDTA tubes were centrifuged at $2,930 \mathrm{~g}$ at $4^{\circ} \mathrm{C}$ for 5 min to separate the plasma. Supernatant plasma was collected and activity in 0.2 mL aliquots was counted on a gamma counter. Plasma samples were then mixed with urea $(8 \mathrm{M})$ to denature plasma proteins, filtered through a $1.0 \mu \mathrm{~m}$ Whatman 13 $\mathrm{mm} \mathrm{CD} / \mathrm{X}$ syringe filter and loaded onto an automatic column-switching HPLC system connecting a capture column $(4.6 \times 19 \mathrm{~mm})$ self-packed with Phenomenex Strata-X polymeric SPE sorbent and eluting with $1 \% \mathrm{MeCN}$ in water at $2 \mathrm{~mL} / \mathrm{min}$ for 4 min . The trapped activity in the capture column was then back flushed and eluted through a Phenomenex Luna C18 phenyl hexyl analytical column ($4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$) with 45% MeCN in 0.1 M ammonium formate $(\mathrm{pH}=6.4)$ at a flow rate of $1.8 \mathrm{~mL} / \mathrm{min}$. The eluent fractions were collected with an automated fraction collector (Spectrum Chromatography CF-1). Activity in the whole blood, plasma, filtered plasma-urea mix, filter, and HPLC eluent fractions was all counted with the automatic γ counters. The sample recovery rate, extraction efficiency, and HPLC fraction recovery were monitored. The un-metabolized
parent fraction was determined as the ratio of the sum of radioactivity in fractions containing the parent compound to the total amount of radioactivity collected and fitted with inverted gamma function and corrected for filtration efficiency. The arterial input function (AIF) was then calculated as the product of the total counts in the plasma and the interpolated parent fraction at each time point.
3.2 Metabolite analysis results

SUPPLEMENTAL FIGURE 1. Parent fraction in plasma (A) and metabolite-corrected plasma activity over time (B) for ${ }^{11} \mathrm{C}$-EKAP and ${ }^{11} \mathrm{C}-\mathrm{GR} 103545$, and HPLC chromatograms from metabolite analysis of ${ }^{11} \mathrm{C}$-EKAP (C).
4. Time activity curve (TAC) analysis and kinetic modeling

4.1 General information

High-resolution magnetic resonance (MR) images were acquired with a Siemens 3T Trio scanner to assist with image co-registration and anatomical localization of regions
of interest (ROIs). The MR image was registered to an atlas and to the PET images, as previously described (6).

PET emission data were attenuation-corrected using the transmission scan, and dynamic images were reconstructed using a Fourier rebinning and filtered back projection algorithm. Using the MR images, and the following ROIs were defined: amygdala, brain stem, caudate nucleus, cerebellum, cingulate cortex, frontal cortex, globus pallidus, hippocampus, insula, nucleus accumbens, occipital cortex, pons, putamen, substantia nigra, temporal cortex and thalamus. For each PET scan, radiotracer concentrations over time, i.e. time-activity curves (TACs) were generated for the ROIs. Tissue to metabolite-corrected plasma activity ratio over time was calculated for the cingulate cortex, temporal cortex and cerebellum regions to project the radiotracer equilibration approaching time.

Regional TACs were fitted and analyzed with the one-tissue and two-tissue compartment (1TC, 2TC) models (7), as well as the multilinear analysis (MA1) method with a starting time $\left(t^{*}\right)$ of $30 \mathrm{~min}(8)$. Regional distribution volume $\left(V_{\mathrm{T}}, \mathrm{mL} / \mathrm{cm}^{3}\right)$ was calculated from kinetic analysis of regional TACs using the metabolite-corrected arterial plasma concentration as the input function (9). Akaike information criterion (AIC) (10) and visual assessment of fitting curves were used to evaluate the goodness-of-fits.
4.2 Dose-dependent blocking scans

SUPPLEMENTAL FIGURE 2. Regional TACs of ${ }^{11}$ C-EKAP in a baseline scan (A) and blocking scans with the KOR selective antagonist LY2456302 at a dose of $0.05 \mathrm{mg} / \mathrm{kg}$
(B) and $0.3 \mathrm{mg} / \mathrm{kg}(\mathrm{C})$, showing dose-dependent blockade of ${ }^{11} \mathrm{C}$-EKAP binding.
4.3 Goodness-of-fits of kinetic models

SUPPLEMENTAL FIGURE 3. Comparison of curve fitting with the $1 \mathrm{TC}, 2 \mathrm{TC}$ models and MA1 ($\mathrm{t}^{*}=30 \mathrm{~min}$) method in selected brain regions (A); and correlation of regional $B P_{\mathrm{ND}}$ values derived with the SRTM and MA1 models (B).

REFERENCES

1. Nabulsi NB, Zheng MQ, Ropchan J, et al. $\left[{ }^{11} \mathrm{C}\right]$ GR103545: novel one-pot radiosynthesis with high specific activity. Nucl Med Biol. 2011;38:215-221.
2. Larsen P, Ulin J, Dahlstrom K, Jensen M. Synthesis of [C-11]iodomethane by iodination of [C-11]methane. Appl Radiat Isotopes. 1997;48:153-157.
3. Jewett DM. A simple synthesis of $\left[{ }^{11} \mathrm{C}\right]$ methyl triflate. Int J Rad Appl Instrum A. 1992;43:1383-1385.
4. Nabulsi N, Huang Y, Weinzimmer D, et al. High-resolution imaging of brain 5-HT 1B receptors in the rhesus monkey using [${ }^{11}$ C]P943. Nucl Med Biol. 2010;37:205-214.
5. Hilton J, Yokoi F, Dannals RF, Ravert HT, Szabo Z, Wong DF. Column-switching HPLC for the analysis of plasma in PET imaging studies. Nucl Med Biol. 2000;27:627-630.
6. Sandiego CM, Weinzimmer D, Carson RE. Optimization of PET-MR registrations for nonhuman primates using mutual information measures: A Multi-Transform Method (MTM). Neuroimage. 2013;64:571-581.
7. Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21:635-652.
8. Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002;22:1271-1281.
9. Innis RB, Cunningham VJ, Delforge J, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:15331539.
10. Akaike H. New Look at Statistical-Model Identification. IEEE Trans Autom Control. 1974;Ac19:716-723.
