Derivation of G-factor used in Table 2

Generalized Linear-Quadratic model (GLQM) for an arbitrary dose-rate function has been described by (1)

$$
\begin{equation*}
\ln S F(T)=-\alpha D_{T}(T)-2 \beta \int_{0}^{T} d t \dot{D}(t) \int_{0}^{t} \dot{D}(\omega) R(t-\omega) d \omega \tag{S1}
\end{equation*}
$$

where α and β are the intrinsic radiosensitivity parameters, D_{T} is the total physical dose accumulated up to time $T, \dot{D}(t)$ is the dose-rate function and $R(t)$ is the repair function of sublethal damage. $R(t)$ has commonly been treated as behaving exponentially, i.e. $R(t)=e^{-\mu t}$, which assumes the repair rate is constant up to time T with μ as the repair constant, in the literature (2). Based on this generalized model, Lea-Catcheside factor, G, is then defined as the ratio of the second term in Eq.(S1) with repair to the same term without repair

$$
\begin{equation*}
G=\frac{\int_{0}^{T} d t \dot{D}(t) \int_{0}^{t} \dot{D}(\omega) R(t-\omega) d \omega}{\int_{0}^{T} d t \dot{D}(t) \int_{0}^{t} \dot{D}(\omega) d \omega} . \tag{S2}
\end{equation*}
$$

Since trapezoidal integration is used to assess the cumulative activity reported in Table 2, the activity function assumed is

$$
\begin{align*}
A(t) & =m_{1} t, t \leq 1 \\
& =m_{1}+m_{2} t, 1<t \leq 24 \tag{S3}
\end{align*}
$$

where t is the time (in hour), m_{1} and m_{2} are the slopes connecting from $t=0$ to $t=1$ and from $t=1$ to $t=24$, respectively. The dose-rate function is then defined as

$$
\begin{equation*}
\dot{D}(t)=A(t) \times S \tag{S4}
\end{equation*}
$$

where S is the simulated S-value. Therefore, the G-factor after 1 hour is

$$
\begin{align*}
G & =\frac{s^{2} \int_{0}^{1} d t m_{1} t \int_{0}^{t} m_{1} \omega e^{-\mu(t-\omega)} d \omega}{\frac{1}{2} S^{2}\left(\frac{1}{2} m_{1}\right)^{2}} \\
& =8 \times \int_{0}^{1} t\left(\frac{u t+e^{-u t}-1}{u^{2}}\right) d t \\
& =8 \times\left(\frac{6-3 \mu^{2}+2 \mu^{3}-6(1+\mu) e^{-\mu}}{6 \mu^{4}}\right) \tag{S5}
\end{align*}
$$

which is a function dependent only on the repair constant μ where μ is the reciprocal of repair half-time, $T_{\text {rep }}$ times $\ln 2 . T_{\text {rep }}$ is assumed to be 1.5 hour for Table $2(3,4)$ and thus $G=0.89$. Similarly, the G-factor after 24 hours can be derived.

$$
\begin{align*}
& G=\frac{s^{2}\left(\int_{0}^{1} d t m_{1} t \int_{0}^{t} m_{1} \omega e^{-\mu(t-\omega)} d \omega+\int_{1}^{24} d t\left(m_{1}+m_{2} t\right) \int_{0}^{t}\left(m_{1}+m_{2} \omega\right) e^{-\mu(t-\omega)} d \omega\right)}{\frac{1}{2} s^{2}\left[\frac{1}{2} m_{1}+23 m_{1}+\frac{23}{2} m_{2}\right]^{2}} \\
= & \frac{2}{\left[\frac{1}{2} m_{1}+23 m_{1}+\frac{23^{2}}{2} m_{2}\right]^{2}} \times\left[m_{1}^{2}\left(\frac{6-3 \mu^{2}+2 \mu^{3}-6(1+\mu) e^{-\mu}}{6 \mu^{4}}\right)+K\right] \tag{S6}
\end{align*}
$$

where K is

$$
\begin{aligned}
K= & \int_{1}^{24}\left(m_{1}+m_{2} t\right)\left[\left(\frac{m_{1}-m_{1} e^{-\mu t}}{\mu}\right)+m_{2}\left(\frac{\mu t+e^{-\mu t}-1}{\mu^{2}}\right)\right] d t \\
= & \frac{1}{6 \mu^{4}} \times\left[-6 e^{-24 \mu}\left(m_{2}-m_{1} \mu\right)\left(m_{2}+m_{1} \mu+24 m_{2} \mu\right)+6 e^{-\mu}\left(m_{2}-m_{1} \mu\right)\left(m_{2}+\right.\right. \\
& \left.\left.\left(m_{1}+m_{2}\right) \mu\right)+23 \mu^{2}\left(6 m_{1}{ }^{2} \mu+6 m_{1} m_{2}(25 \mu-1)+m_{2}{ }^{2}(1202 \mu-75)\right)\right] .
\end{aligned}
$$

Then one can easily calculate G-factor for different cell compartments, which have different uptake behavior, of each cell line based on empirical internalization data. G-factors after 24 hours for the cell lines studied in this work have been compiled in Supplemental Table 3.

REFERENCES

1. Millar WT. Application of the linear-quadratic model with incomplete repair to radionuclide directed therapy. Br J Radiol. 1991;64:242-251.
2. Strigari L, Benassi M, Chiesa C, Cremonesi M, Bodei L, D'Andrea M. Dosimetry in nuclear medicine therapy: radiobiology application and results. Q J Nucl Med Mol Imaging. 2011;55:205-221.
3. Thames HD, Withers HR, Peters LJ. Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair. Br J Cancer Suppl. 1984;6:263-269.
4. Vegesna V, Withers HR, Thames HD, Jr., Mason K. Multifraction radiation response of mouse lung. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47:413-422.

Supplemental Figure 1. Experimental distribution of cell and nucleus radii for (A) MDA-MB468, (B) SQ20B and (C) 231-H2N cell lines. The linear fit to the data (dashed line) and the 95% confidence intervals (dotted lines) of each given dataset are shown.

Supplemental Figure 2. Spatial distribution of ${ }^{111} \mathrm{In}$-EGF in $231-\mathrm{H} 2 \mathrm{~N}$ spheroids, showing microautoradiograms of $8 \mu \mathrm{~m}$ spheroid sections after (A) 1 h (insert shows control) and (B) 24 h treatment. (C) Internalized activity (mBq/cell) determined at 1 and 24 h incubation. $* \mathrm{P}<0.05$, ns $=$ not significant.

Supplemental Figure 3. Spatial distribution of ${ }^{111} \mathrm{In}-\mathrm{Tz}$ in MDA-MB-468 and SQ20B spheroids, showing microautoradiograms of $8 \mu \mathrm{~m}$ spheroid sections after (A and D) 1 h (insert shows control) and (B and E) 24 h treatment. (C and F) Internalized activity ($\mathrm{mBq} / \mathrm{cell}$) determined at 1 and 24 h incubation.

Supplemental Figure 4. The contribution of dose deposited by other cells (cross dose) to the total dose (self-dose plus cross dose) as a function of radial distance to the spheroid center for radioactive sources originating from the nucleus, cytoplasm and cell surface in the $231-\mathrm{H} 2 \mathrm{~N}$ cell line.

Supplemental Table 1

Ratio of cross dose to total dose for different source locations.

	Cross dose to total dose ratio for cells in cluster $-\mathbf{R C P}$		
	$\mathrm{S}(\mathrm{N} \leftarrow \mathrm{N})$	$\mathrm{S}(\mathrm{N} \leftarrow \mathrm{Cy})$	$\mathrm{S}(\mathrm{N} \leftarrow \mathrm{Cs})$
MDA-468	0.168 ± 0.059	0.519 ± 0.126	0.643 ± 0.153
SQ20B	0.200 ± 0.069	0.542 ± 0.132	0.657 ± 0.151
$\mathbf{2 3 1 - H 2 N}$	0.151 ± 0.055	0.542 ± 0.158	0.697 ± 0.204

Supplemental Table 2

G-factor after 24 h for different compartments of each cell line. Average values were used in the calculations.

				Membrane	Cytoplasm
Nucleus	Average				
	MDA-MB-468	0.180	0.176	0.172	0.176
SQ20B	0.171	0.214	0.167	0.184	
	$231-H 2 N$	0.209	0.203	0.182	0.198
	MDA-MB-468	0.188	0.221	0.206	0.205
	SQ20B	0.190	0.214	0.199	0.201
	$231-H 2 N$	0.193	0.186	0.168	0.182

