

SUPPLEMENTAL FIGURE 1. Comparison of total V_{\top} in various brain regions between cognitively HE subjects (1, 2, and 3) and AD subjects (6,7 , and 10) who received arterial sampling. V_{T} values were calculated using unconstrained 2tissue compartmental model (2-TCM).

SUPPLEMENTAL FIGURE 2. Regional Logan plots (open symbols) and linear regressions (solid lines) derived from invasive Logan plot in a representative HE (Subject 3 - left plot) and AD (Subject 10 - right plot). Normalized time on x-axis is derived by the equation: $\int_{0}^{T} C_{p}(t) d t / C_{t}(T)$. Normalized brain uptake on y -axis is derived by the equation: $\int_{0}^{T} C_{t}(t) d t / C_{t}(T)$.

SUPPLEMENTAL FIGURE 3. Effect of bone uptake due to potential defluorination on brain cortical uptake. (A) Sagittal cross-sectional images (CT, PET, and PET and CT fusion) of a representative HE (2) subject and AD (8) subject showing atlas-derived regional VOI overlays (temporal cortex in yellow, fusiform gyri in pink, parahippocampal gyri in green) and manually drawn spheno-temporal bone VOIs (in red). PET images are averaged between 60-90 min and are color scaled as SUV between 0 and 2. (B) Regional (Brain cortices,
adjacent bone, and putamen) SUVR time course in HE subjects with cerebellar cortex as a reference. Curves represent a mean of 4 subjects. (C) Regional (Brain cortices, adjacent bone, putamen) SUVR time course in AD subjects with cerebellar cortex as reference. Curves represent a mean of 6 subjects.

SUPPLEMENTAL TABLE 1: CSF, Amyloid PET, and MRI characteristics in AD cohort

		CSF			Amyloid PET	MRI			
		Aß42	Total tau	${ }^{181}$ phosphotau		MTA R	MTA L	ARWMC	GRE
Subject	Clinical				(SUVR <1.29)				Hyperintensities
ID	diagnosis	($>853 \mathrm{pg} / \mathrm{mL}$)	(<400 pg/mL)	(<65 pg/mL)					
5	Dementia	439	163	29.4	N/A	2	2	3	8
6	Dementia	N/A	N/A	N/A	N/A	0	1	1	1
7	MCl	707	496	66	1.73	3	3	0	0
8	Dementia	409	1042	164	N/A	3	3	1	0
9	Dementia	N/A	N/A	N/A	N/A	2	3	0	0
10	MCl	782	1336	165	1.71	2	3	0	0

ARWMC = Age-related white matter change (based on reference 1), CSF = Cerebrospinal fluid (cutoff criteria based on reference 2), GRE =
Gradient recalled echo, $\mathrm{MCI}=$ Mild cognitive impairment, MTA R/L= Medial temporal lobe atrophy score (based on reference 3) right/left, $\mathrm{N} / \mathrm{A}=$ not applicable, SUVR = Regional standard uptake value ratio. The values between brackets indicate the normal range. The amyloid PET was performed using ${ }^{18} \mathrm{~F}$-florbetaben.

SUPPLEMENTAL TABLE 2: Rate constants and total distribution volumes from two-tissue compartment model in HE subjects

Two-tissue compartmental rate constants									Two-tissue $V_{T}\left(\mathrm{~mL} \cdot \mathrm{~cm}^{-3}\right)$			
Brain region	$\mathrm{K}_{1}\left(\mathrm{~mL} \cdot \mathbf{c m}^{-3} \cdot \mathrm{~min}^{-1}\right)$		$k_{2}\left(\mathrm{~min}^{-1}\right)$		$k_{3}\left(\mathbf{m i n}^{-1}\right)$		$k_{4}\left(\mathbf{m i n}^{-1}\right)$					
Temporal	0.326	(1.2\%)	0.135	(2.1\%)	0.012	(6.5\%)	0.012	(8.4\%)	5.2	\pm	1.3	(2.2\%)
Hippocampus	0.283	(1.5\%)	0.115	(3\%)	0.012	(11.3\%)	0.017	(12.3\%)	4.4	\pm	0.9	(2.2\%)
Amygdala	0.286	(2.5\%)	0.108	(4.6\%)	0.008	(18.2\%)	0.013	(23.4\%)	4.2	\pm	0.9	(4\%)
Caudate	0.274	(1.6\%)	0.120	(3.1\%)	0.012	(14.1\%)	0.016	(12.1\%)	3.7	\pm	0.8	(2\%)
Putamen	0.417	(1.3\%)	0.124	(2.9\%)	0.010	(17.2\%)	0.023	(14\%)	4.8	\pm	1.2	(1.4\%)
Cerebellar cortex	0.349	(1.2\%)	0.143	(2\%)	0.010	(6\%)	0.010	(9.3\%)	5.8	\pm	1.7	(2.8\%)

Rate constants are presented as median values and V_{T} values as mean \pm SD from 3 subjects. For each brain region, median standard errors are
listed in parentheses and are expressed as \% of the variable itself.

SUPPLEMENTAL TABLE 3: Rate constants and total distribution volumes from two-tissue compartment model in AD subjects

Two-tissue compartmental rate constants									Two-tissue $V_{T}\left(\mathbf{m L} \cdot \mathrm{~cm}^{\mathbf{- 3}}\right)$			
Brain region	$\mathrm{K}_{1}\left(\mathbf{m L} \cdot \mathbf{c m}^{-3} \cdot \mathbf{m i n}^{-1}\right)$		$k_{2}\left(\mathrm{~min}^{-1}\right)$		$k_{3}\left(\mathbf{m i n}^{-1}\right)$		$k_{4}\left(\mathbf{m i n}^{-1}\right)$					
Temporal	0.336	(1.1\%)	0.144	(2.2\%)	0.022	(4.1\%)	0.015	(5.2\%)	5.9	\pm	0.9	(2\%)
Hippocampus	0.267	(1.8\%)	0.117	(4.5\%)	0.033	(8.2\%)	0.018	(8.4\%)	6.0	\pm	0.3	(2.9\%)
Amygdala	0.234	(2.3\%)	0.103	(5.9\%)	0.035	(9.1\%)	0.011	(13.9\%)	9.8	\pm	1.5	(6.6\%)
Caudate	0.233	(2.5\%)	0.141	(5.3\%)	0.021	(13.2\%)	0.023	(10.5\%)	3.1	\pm	0.5	(2.1\%)
Putamen	0.470	(1.2\%)	0.145	(2.8\%)	0.021	(9.2\%)	0.034	(6.7\%)	5.3	\pm	1.0	(1\%)
Cerebellar cortex	0.335	(0.9\%)	0.145	(1.7\%)	0.017	(4.6\%)	0.016	(6.4\%)	5.4	\pm	1.3	(1.7\%)

Rate constants are presented as median values and V_{T} values as mean \pm SD from three subjects. For each brain region, median standard errors are listed in parentheses and are expressed as \% of the variable itself.

SUPPLEMENTAL TABLE 4: SUVRs and DVRs from different models in HE subjects

Brain region	SUVR60-90 min			DVR $_{2-\text {-cm }}$			DVR Logan Plot $^{\text {a }}$			DVR LoganReftissue $^{\text {a }}$		
Temporal	0.98	\pm	0.07	0.88	\pm	0.08	0.92	\pm	0.06	0.94	\pm	0.04
Hippocampus	0.93	\pm	0.10	0.76	\pm	0.12	0.82	\pm	0.09	0.91	\pm	0.07
Amygdala	0.84	\pm	0.11	0.70	\pm	0.08	0.75	\pm	0.09	0.84	\pm	0.07
Caudate	0.79	\pm	0.06	0.67	\pm	0.10	0.70	\pm	0.07	0.79	\pm	0.04
Putamen	0.91	\pm	0.04	0.84	\pm	0.11	0.89	\pm	0.06	1.01	\pm	0.06

DVR $_{\text {2тсм }}$ and DVR $_{\text {Logan Plot }}$ Values are Mean \pm SD from $\mathrm{n}=3$ HE subjects, whereas SUVR $_{60-90 \text { min }}$ and DVR $_{\text {LoganReetissue }}$ are from $\mathrm{n}=4$ HE subjects

SUPPLEMENTAL TABLE 5: SUVRs and DVRs from different models in AD subjects

Brain region	SUVR $_{60-90 \text { min }}$	DVR ${ }_{\text {2TCM }}$	DVR $_{\text {Logan Plot }}$	DVR
Temporal	1.64 ± 0.72	1.12 ± 0.21	1.12 ± 0.22	1.39 ± 0.57
Hippocampus	1.37 ± 0.25	1.16 ± 0.05	1.20 ± 0.13	0.99 ± 0.50
Amygdala	1.67 ± 0.40	1.61 ± 0.14	1.73 ± 0.15	1.20 ± 0.60
Caudate	0.71 ± 0.16	0.62 ± 0.06	0.65 ± 0.08	0.68 ± 0.10
Putamen	1.15 ± 0.35	0.97 ± 0.12	1.03 ± 0.08	1.19 ± 0.20

DVR $_{\text {2тсм }}$ and DVR Logan Plot Values are Mean \pm SD from $\mathrm{n}=3$ AD subjects, whereas SUVR $_{60-90 \text { min }}$ and DVR LoganReftissue are from $\mathrm{n}=6$ AD subjects

SUPPLEMENTAL TABLE 6: Correlations between SUVR and DVRs across subjects

Subject	SUVR60-90min ${ }^{\text {Vs. }}$ DVR $_{\text {2-TCM }}$			SUVR60-90min ${ }^{\text {Vs. }}$ DVRLogan Plot					
	\mathbf{R}^{2}	Slope	Intercept	\mathbf{R}^{2}	Slope	Intercept	\mathbf{R}^{2}	Slope	Intercept
1	0.61	0.64	0.39	0.78	0.8	0.21	0.88	1.18	-0.17
2	0.54	0.80	0.29	0.65	1.01	0.06	0.5	1.02	0
3	0.77	0.99	0.05	0.78	0.86	0.17	0.63	1.07	-0.08
4	N/A	N/A	N/A	N/A	N/A	N/A	0.31	0.9	0.14
5	N/A	N/A	N/A	N/A	N/A	N/A	0.85	1.17	-0.01
6	0.94	1.14	-0.09	0.95	1.13	-0.12	0.83	1.47	-0.44
7	0.96	1.06	-0.09	0.94	1	0	0.79	1.36	-0.29
8	N/A	N/A	N/A	N/A	N/A	N/A	0.98	1.08	0.14
9	N/A	N/A	N/A	N/A	N/A	N/A	0.98	1.38	-0.22
10	0.96	1.13	-0.09	0.96	1.11	-0.08	0.9	1.51	-0.45

N/A: Not applicable due to no arterial sampling.

SUPPLEMENTAL REFERENCES

1. Wahlund LO, Barkhof F, Fazekas F, et al. A new rating scale for agerelated white matter changes applicable to MRI and CT. Stroke. Jun 2001; 32(6):1318-1322.
2. Adamczuk K, Schaeverbeke J, Vanderstichele HM, et al. Diagnostic value of cerebrospinal fluid $A \beta$ ratios in preclinical Alzheimer's disease. Alzheimers Res Ther. Dec 2015; 18;7(1):75.
3. Scheltens P, Weinstein HC, Leys D. Neuro-imaging in the diagnosis of Alzheimer's disease. I. Computer tomography and magnetic resonance imaging. Clin Neurol Neurosurg. 1992;94(4):277-289.
