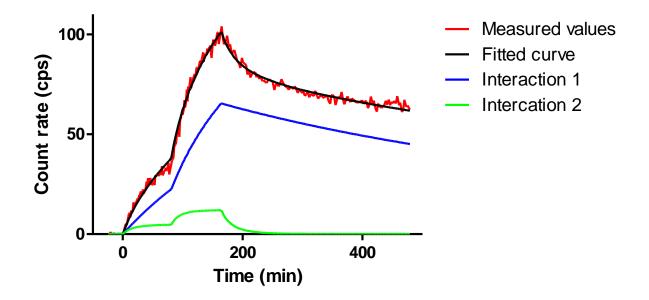

Supplemental Figure 1. Mass spectra of purified ADAPT6 variants showing the molecular weights of Cys²-ADAPT6 (6447 Da) and Cys⁵⁹-ADAPT6 (6502 Da). Theoretical values were calculated to 6445.2 and 6502.2 Da, respectively. The molecular weight of the variants was measured by matrix assisted laser desorption ionization (MALDI) using a 4800 MALDI TOF/TOF analyzer (SCIEX).


Supplemental Figure 2. Overlay of circular dichroism spectra from 250-195 nm for DOTA-Cys²-ADAPT6 and DOTA-Cys⁵⁹-ADAPT6 before (blue) and after (red) heating from 20-90°C. The spectra show high alpha helical content of the protein domains. Also the ability to fully refold to the original secondary structure after heating to 90°C can be seen when comparing the blue and red curves. The secondary structure, melting temperature and refolding properties were determined by circular dichroism (CD) using a JASCO J-810 spectropolarimeter (JASCO).

Supplemental Figure 3. Indirect radioiodination of Cys^{2/59}-ADAPT6 molecules using HPEM. I: ¹²⁵I⁻ 5% ACOH in MeOH; Chloramine-T; 5 min at room temperature; II: freshly reduced cysteine-containing protein, ammonium acetate, pH 6.0; 60 min at room temperature

Supplemental Figure 4. Binding specificity of radiolabeled ADAPT6 constructs to HER2 expressing SKOV3 cells $(1.6 \times 10^6 \text{ receptors/cell})$ and BT474 cells $(2 \times 10^6 \text{ receptors/cell})$. (A) ¹²⁵I-DOTA-Cys²-ADAPT6 and ¹²⁵I-DOTA-Cys⁵⁹-ADAPT6. (B) ¹¹¹In-Cys²-ADAPT6 and ¹¹¹In-HPEM-Cys⁵⁹-ADAPT6. To test the binding specificity, 25 nM of the labeled variants was added and for receptor blocking, a 100-fold molar excess of nonlabeled corresponding ADAPT6 molecules was added. The dishes were incubated at 37°C for 1 h in a humidified incubator. The media was collected and by using trypsin-EDTA solution the cells were detached and radioactivity was measured. Data are presented as mean values with standard deviations (n=3).

Supplemental Figure 5. Representative LignadTracer sensorgram (binding of ¹¹¹In-DOTA-Cys²-ADAPT6 to SKOV-3 cells). Uptake curves were recorded at 0.33 and 1 nM. The curves show measured data (red), a fitted curve according to the InteractionMap (black), and the two resolved interactions; one with a slower dissociation rate (blue) and one with a more rapid dissociation (green).

Supplemental Table 1. Percentage of radioactivity in the high molecular fraction (<5 kDa) of blood plasma at 1 h after injection.

	Label	
Label position	¹²⁵ I-HPEM	¹¹¹ In-DOTA
C-terminus	60±2	92.7±0.9
N-terminus	55±5	92.6±0.7

	Time	110 / 5 /10	Uptake (9	Tumor-to-organ ratio			
	point	Tumor	Blood	Liver	Kidney	Blood	Liver
	(h)						
¹¹¹ In-DOTA-	1	13±2	0.35 ± 0.06	0.21±0.03	272±21	38±3	64±10
Cys ⁵⁹ -ADAPT6 ^a	4	15±2	0.053 ± 0.004	0.17±0.02	284±21	277±35	85±17°
¹¹¹ In-ABY-025	1	17±2	1.1±0.1	1.9±0.2	186±24	15±3	8.7±0.6
Affibody	4	15±3	0.18±0.02	1.5±0.3	163±16	88±15	10±1
molecule ^b							
¹¹¹ In-(HE) ₃ -G3	4	8.8±1.3	0.05 ± 0.01	0.7 ± 0.1	232±24	176	12.3
DARPin ^c							
⁶⁸ Ga-NOTA-	1	4.2 ± 1.0	0.5 ± 0.2	2.9±0.3	38±6	9±3	1.4
2Rs15d							
nanobody ^d							
¹¹¹ In-CHX-A''-	4	7.8	5.8	5.3	27.9	1.34	1.47
C6.5K-A –	24	9.8	0.5	3.6	31	19.6	2.7
diabody ^e							
¹¹¹ In-DTPA-	48	16.3±0.6	7.2 ± 0.7	10±1	6.5±0.2	2.3	1.63
trastuzumab ^f							

Supplemental Table 2. Comparison of targeting properties of some radiometal-labeled imaging probes in mice bearing SKOV-3 xenografts.

^a data from this study;

^b data from Ahlgren S, Orlova A, Wållberg H et al. Targeting of HER2-expressing tumors using ¹¹¹In-ABY-025, a second-generation affibody molecule with a fundamentally reengineered scaffold. *J Nucl Med.* 2010;51:1131-1138.

^c data from Goldstein R, Sosabowski J, Livanos M et al. Development of the designed ankyrin repeat protein (DARPin) G3 for HER2 molecular imaging. *Eur J Nucl Med Mol Imaging*. 2015;42:288-301.

^d data from Xavier C, Vaneycken I, D'huyvetter M et al. Synthesis, preclinical validation, dosimetry, and toxicity of ⁶⁸Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. *J Nucl Med.* 2013;54:776-784.

^e data from Adams GP, Shaller CC, Dadachova E et al. A single treatment of yttrium-90-labeled CHX-A"-C6.5 diabody inhibits the growth of established human tumor xenografts in immunodeficient mice. *Cancer Res.* 2004;64:6200-6206.

^f data form Lub-de Hooge MN, Kosterink JG, Perik PJet al. Preclinical characterisation of ¹¹¹In-DTPA-trastuzumab. *Br J Pharmacol* 2004;143 99-106.