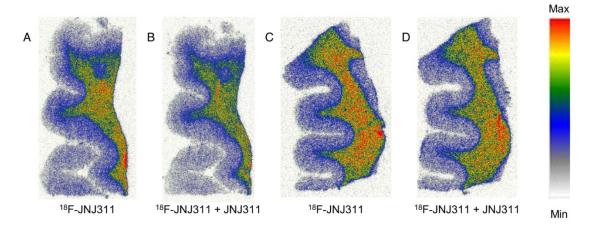
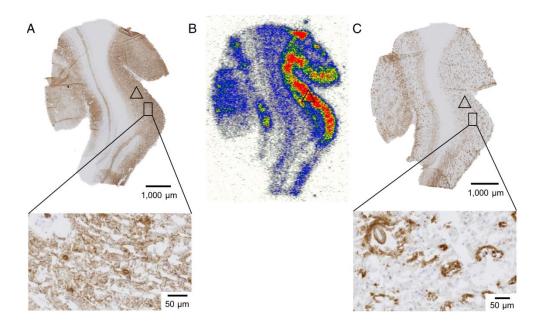
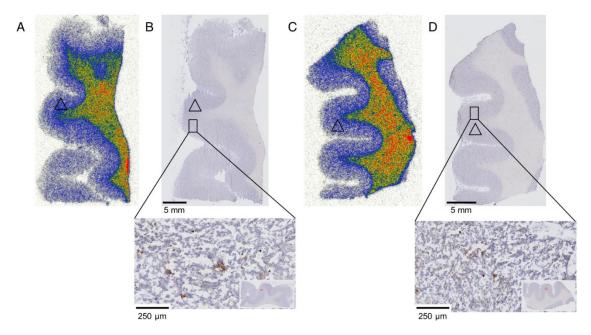
Supplemental Table 1. Human PK predictions for JNJ311.


	Mouse [†]	Rat [†]	Dog^\dagger	Human
Unbound plasma fraction (%)	36.8	36.9	36.9	37.1
Dose JNJ311 (mg/kg)*	0.25	0.25	0.25	0.25 (pred.)
Plasma clearance (mL/min/kg)	193 ± 63	116 ± 10	77 ± 16	1.05 [‡] , 1.285 [§]
Liver blood flow (%)	> 100	> 100	> 100	-
Volume of distribution at steady state (L/kg)	4.0 ± 0.7	4.5 ± 0.9	4.0 ± 1.0	2.98 [‡] , 3.96 [§]
Elimination half-life (h)	0.3 ± < 0.1	0.4 ± 0.1	0.7 ± 0.1	$0.7^{\ddagger}, 2.4^{\S}$

^{*}Formulations with 20% HPβCD aq, †values represent mean ± standard deviation from 3 animals, ‡predicted value using Dedrick approach, *predicted value using allometric scaling


Supplemental Table 2. Biodistribution of 18 F-JNJ311 and 18 F-AV1451 in NMRI mice at 2, 10, 30 and 60 min p.i.*

D - d	¹⁸ F-JNJ311				¹⁸ F-AV1451			
Body part -	2 min	10 min	30 min	60 min	2 min	10 min	30 min	60 min
Blood	0.5 ± 0.1	0.3 ± 0.1	0.2 ± 0.0	0.1 ± 0.0	0.4 ± 0.1	0.3 ± 0.0	0.2 ± 0.0	0.2 ± 0.0
Bone	0.5 ± 0.2	0.7 ± 0.1	0.6 ± 0.1	0.5 ± 0.1	0.6 ± 0.4	0.5 ± 0.1	0.7 ± 0.1	0.9 ± 0.2
Brain	1.9 ± 0.1	0.8 ± 0.2	0.3 ± 0.0	0.1 ± 0.0	2.2 ± 0.3	1.0 ± 0.2	0.2 ± 0.1	0.1 ± 0.0
Cerebellum	1.9 ± 0.2	0.7 ± 0.1	0.2 ± 0.1	0.1 ± 0.0	2.4 ± 0.5	0.9 ± 0.2	0.2 ± 0.1	0.1 ± 0.0
Cerebrum	1.9 ± 0.1	0.8 ± 0.1	0.3 ± 0.1	0.1 ± 0.0	2.1 ± 0.3	1.0 ± 0.2	0.3 ± 0.1	0.1 ± 0.0
Heart	2.3 ± 0.8	1.1 ± 0.6	0.4 ± 0.1	0.1 ± 0.1	2.0 ± 0.4	0.8 ± 0.1	0.4 ± 0.1	0.3 ± 0.0
Kidneys	10.6 ± 2.9	8.1 ± 2.5	2.9 ± 0.6	0.9 ± 0.1	10.4 ± 2.4	9.7 ± 1.0	4.9 ± 1.5	3.8 ± 0.7
Liver	2.6 ± 0.6	4.6 ± 0.7	3.4 ± 0.4	1.6 ± 0.3	3.6 ± 0.6	5.6 ± 0.5	6.5 ± 0.6	5.3 ± 0.6
Lungs	8.3 ± 4.6	2.6 ± 1.3	1.0 ± 0.3	0.2 ± 0.1	7.0 ± 2.5	1.6 ± 0.6	1.2 ± 0.3	0.6 ± 0.2
Muscle	1.4 ± 0.1	0.6 ± 0.0	0.2 ± 0.1	0.1 ± 0.0	0.9 ± 0.5	0.5 ± 0.1	0.2 ± 0.0	0.1 ± 0.0
Pancreas	1.4 ± 0.4	1.8 ± 0.4	0.8 ± 0.1	0.2 ± 0.0	1.2 ± 0.6	1.8 ± 0.3	0.7 ± 0.3	0.4 ± 0.1
Spleen	4.9 ± 0.7	2.3 ± 1.0	0.8 ± 0.2	0.2 ± 0.0	4.5 ± 1.6	5.2 ± 4.8	1.2 ± 0.4	0.9 ± 0.4
	2/60 min			2/60 min				
Brain	29.6			18.3				
Blood	7.5			2.4				


^{*}Data are expressed as SUV mean \pm standard deviation; n = 3 per time point; ratios were calculated using non rounded values

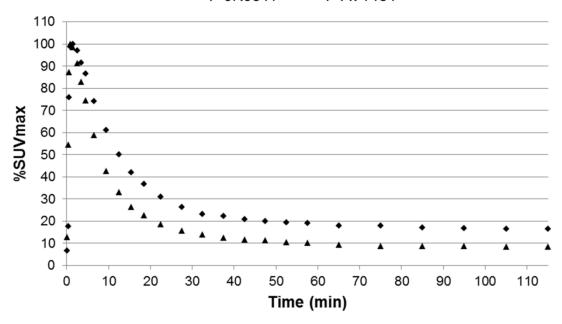
Supplemental Figure 1. Adjacent, 10- μ m-thick, post-mortem human PSP (A and B) and CBD (C and D) brain slices of the frontal cortex of a PSP patient (71-year-old) and CBD patient (74-year-old) incubated with 18 F-JNJ311 (740 kBq / 500 μ L / slice) (A and C) in the presence of authentic reference compound JNJ311 (B and D) at 1 μ mol/L.

Supplemental Figure 2. Autoradiographic analysis on 10-μm-thick slices of the visual cortex of an AD patient (68-year-old with Braak stage VI) with ¹⁸F-JNJ311 (B). Adjacent slices were immunostained for tau (A, AT8, 1000-μm scale bar) and for β-amyloid (C, 4G8, 1000-μm scale bar). Higher magnification at the bottom identifies tau pathology (50-μm scale bar) and β-amyloid plaques (50-μm scale bar). Triangle indicates area of high density of PHF deposits and relatively low density of β-amyloid deposits.

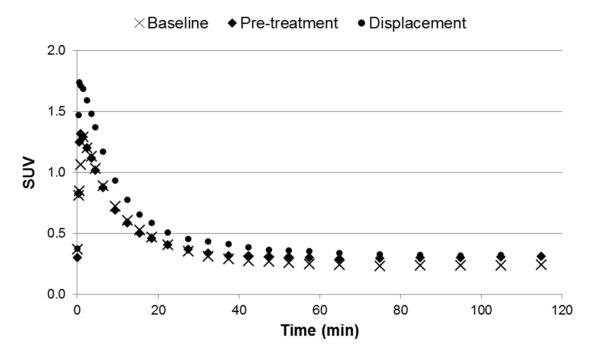
Supplemental Figure 3. Autoradiographic analysis on 10-µm-thick slices of the frontal cortex of a PSP patient (71-year-old; A and B) and CBD patient (74-year-old; C and D) with $^{18}\text{F-JNJ311}$ (A and C). Adjacent slices were immunostained for tau (B and D, AT8, 5-mm scale bar). Higher magnification at the bottom identifies tau pathology (250-µm scale bar). Triangle indicates area of medium density of hyperphosphorylated tau deposits.

Supplemental Table 3. pIC_{50}/K_i (nM) values for purified tau and β -amyloid and molecular features of all compounds.*

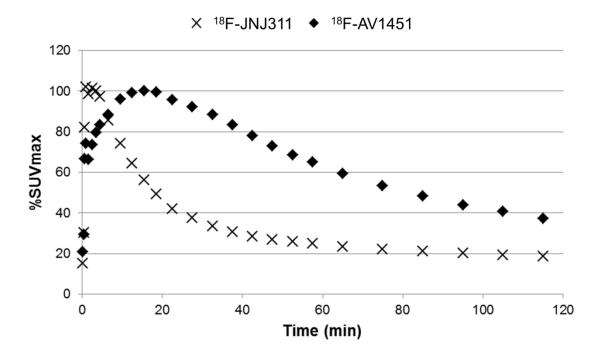
Compound	pIC ₅₀ – tau	K_i — tau	pIC ₅₀ - Aβ	K _i - Aβ	PSA (Ų) [‡]	LogD _{7.4} [†]
JNJ311	7.7	8	< 5	> 4398	51	2.2
AV1451	8.4	1	6.2	278	42	2.2
AV680	7.7	7	5.0	4934	33	3.0
AV45	5.2	> 2323	7.6	12	53	3.1


*pIC₅₀ values were determined from displacement curves of 2-5 independent experiments, K_i values were calculated from IC₅₀ values using the following equation: $K_i = IC_{50}/(1+$ (concentration RL/ K_D RL), with a K_D for PHF of 6.275 nM for 3 H-AV680, a K_D for β -amyloid of 7.85 nM for 3 H-AV45, and 10 nM of RL concentration in both assays; † LogD_{7.4} value was chromatographically determined for JNJ311, but calculated for the other compounds; † PSA = polar surface area

Supplemental Table 4. Relative percentages of intact tracer after i.v. injection of $^{18}\text{F-JNJ}311$


in plasma of mice and a rhesus monkey and perfused brain of mice.

MICE						
Plasma	Mean % \pm standard deviation ($n = 3$) of					
riasilia	intact tracer					
<u>2 min</u>	<u>10 min</u>	<u>30 min</u>	<u>60 min</u>			
85 ± 3	33 ± 6	22 ± 5	11 ± 7			
Perfused brain	Mean % \pm standard deviation ($n = 3$) of					
retrused brain	intact tracer					
	<u>10 min</u>		<u>60 min</u>			
	98 ± 0		94 ± 1			
MONKEY						
Plasma	% $(n = 1)$ of intact tracer					
	<u>10 min</u>	<u>30 min</u>	<u>60 min</u>			
	51	35	28			



Supplemental Figure 4. %SUV $_{max}$ curves of small animal μPET time-activity curves of $^{18}F\text{-JNJ311}$ and $^{18}F\text{-AV1451}$ in the whole brain of a Wistar rat.

Supplemental Figure 5. Whole brain μ PET time-activity curves for ¹⁸F-AV1451 of three female Wistar rats. Baseline scan (n=1); pre-treatment experiment (n=1): pure vehicle, 10 mg/kg injected subcutaneously 60 min prior to radiotracer injection and displacement study (n=1): pure vehicle, 1 mg/kg injected intravenously 30 min after radiotracer injection.

Supplemental Figure 6. Average whole brain $\%SUV_{max}$ curves of ^{18}F -JNJ311 and ^{18}F -AV1451 in a male rhesus monkey.