

SUPPLEMENTAL FIGURE 1.

CR v BV for a range of OSEM reconstructions with varying iterations and subsets. PSF and ToF were applied. There was no filtering. Results are shown for a total phantom activity of 2.7GBq (2100kBq/cc sphere concentration) and orange 0.9GBq (700kBq/cc sphere concentration). Triangles are 4 iterations, squares are 3 iterations, circles are 2 iterations, diamonds are 1 iterations.

CR v BV for a range of BPL (left to right beta = 10000, 5000, 4000, 3000, 2000, 1000, 800, 400 and 100), OSEM PSF, Kao and the QUEST reconstructions for the 28mm (A), 13mm (B) and 10mm (C) diameter spheres of the NEMA IQ Phantom. Green points have a total phantom activity of 2.7GBq (2100kBq/cc sphere concentration) and orange 0.9GBq (700kBq/cc sphere concentration).

SUPPLEMENTAL FIGURE 3.

Graphs showing mean CR (A,B), BV (C,D) and CNR (E,F) for all size spheres in the NEMA IQ phantom. Graphs on the left (A,C,E) have a total phantom activity of 2.7GBq (2100kBq/cc sphere concentration). Graphs on the right (B,D,F) have a total phantom activity of 0.9GBq (700kBq/cc sphere concentration).

SUPPLEMENTAL FIGURE 4.

Mean contrast recovery verses sphere activity concentration for the 28 and 13 mm diameter spheres in the

NEMA IQ phantom. Errors are 1SD.

SUPPLEMENTAL FIGURE 5.

Mean background variability verses sphere activity concentration for the 28, and 13 mm diameter spheres in the

NEMA IQ phantom. Errors are 1SD.

SUPPLEMENTAL FIGURE 6.

Mean contrast-to-noise ratio verses sphere activity concentration for the 28 and 13 mm diameter spheres in the

NEMA IQ phantom. Errors are 1SD.

SUPPLEMENTAL TABLE 1.

Mean CR and BV for different reconstructions.

	Contrast Recovery (%)											Background Variability (%)													
Sphere diameter (mm)		10		13		17	-	22		28		37		10		1	3	1	7		22	2	8	3	7
QUEST*	29.7	(30.4)	30.6	(18.3)	54.6	(36.0)	84.0	(27.4)	79.6	(15.9)	86.3	(9.1)	78.4	(18	3.2)	62.4	(9.5)	50.9	(3.4)	39.9	(5.4)	29.4	(6.3)	20.5	(3.7)
	13.4	(33.8)	47.4	(45.9)	58.1	(65.3)	68.6	(30.9)	76.5	(25.7)	74.8	(25.4)	131.8	(32	2.8)	102.6	(14.1)	87.1	(18.4)	70.1	(8.8)	62.7	(8.0)	45.4	(3.8)
Kao†	23.4	(6.6)	34.7	(10.5)	51.5	(7.0)	71.1	(13.0)	74.3	(4.1)	81.7	(7.0)	40.3	(4.4	4)	35.7	(3.1)	29.3	(3.4)	23.3	(3.3)	17.2	(1.2)	11.5	(1.1)
	14.2	(29.7)	43.2	(23.9)	44.6	(25.3)	54.2	(20.2)	66.7	(7.1)	72.1	(8.4)	68.4	(8.8	8)	57.0	(6.5)	45.5	(9.0)	37.1	(7.8)	32.3	(7.3)	24.3	(7.0)
OSEM PSF‡	12.7	(4.5)	24.3	(7.9)	42.1	(9.5)	67.4	(8.8)	70.1	(4.9)	80.7	(5.3)	27.1	(4.5	5)	23.5	(3.9)	20.6	(3.8)	16.9	(2.7)	13.2	2.1)	8.9	(1.9)
	1.5	(6.1)	30.4	(11.7)	38.2	(18.0)	46.6	(12.3)	69.9	(6.1)	67.2	(9.2)	43.2	(8.6	6)	37.4	(10.4)	33.2	(9.1)	28.0	(6.9)	24.8	(6.3)	19.9	(4.8)
B100	28.3	(35.5)	35.1	(28.1)	57.7	(43.5)	75.0	(26.6)	84.7	(19.1)	90.7	(17.4)	115.0	(22	2.2)	86.3	(21.2)	65.8	(11.4)	52.3	(5.1)	36.2	(6.8)	25.4	(3.8)
	182.7	(375.1)	57.6	(57.5)	52.5	(52.4)	66.2	(26.7)	81.7	(16.1)	76.3	(21.3)	172.8	6 (44	4.6)	146.4	(39.5)	126.9	(31.9)	85.7	(14.8)	69.1	(6.4)	48.5	(6.6)
B400	32.2	(29.1)	34.3	(20.6)	59.0	(31.7)	82.6	(23.8)	84.0	(15.4)	90.9	(13.1)	84.3	(18	3.8)	65.1	(11.7)	50.7	(3.1)	38.7	(3.4)	25.9	(6.2)	17.2	(3.1)
	73.7	(141.8)	61.5	(48.3)	55.5	(54.6)	66.7	(23.0)	79.7	(13.2)	76.0	(20.7)	145.0) (45	5.3)	118.4	(24.7)	101.5	(20.8)	71.1	(8.3)	60.0	(5.2)	43.1	(4.4)
B800	26.7	(17.0)	33.1	(14.6)	57.6	(20.4)	83.0	(20.1)	81.1	(11.4)	89.3	(8.3)	56.4	(12	2.1)	46.2	(6.9)	37.5	(4.5)	28.1	(3.4)	19.4	(3.5)	12.2	(2.6)
	27.5	(51.9)	57.6	(32.7)	55.2	(45.2)	64.6	(19.6)	78.9	(9.0)	76.0	(17.4)	106.4	(28	8.0)	81.9	(3.8)	69.9	(9.2)	52.2	(4.8)	45.7	(3.0)	34.1	(1.6)
B1000	23.6	(13.0)	31.6	(12.6)	55.8	(16.9)	81.3	(18.1)	79.7	(10.1)	88.3	(7.0)	47.8	(10).0)	39.8	(6.4)	32.9	(4.9)	24.9	(3.3)	17.7	(2.5)	11.1	(2.2)
	18.9	(36.2)	54.0	(27.8)	54.1	(40.6)	63.0	(19.5)	78.9	(8.4)	76.3	(15.8)	93.	(20).8)	71.6	(1.7)	60.9	(7.6)	46.7	(5.1)	41.1	(3.5)	31.0	(2.3)
B2000	6.8	(3.4)	16.4	(7.2)	32.4	(3.7)	55.4	(5.4)	68.1	(6.5)	80.4	(5.5)	24.2	(2.4	4)	22.1	(1.8)	19.9	(2.3)	16.4	(3.0)	13.2	(2.3)	8.8	(1.3)
	6.3	(12.6)	39.2	(14.4)	44.4	(25.4)	57.0	(15.8)	74.9	(7.8)	75.7	(10.5)	54.8	(7.5	5)	46.5	(11.6)	41.0	(10.7)	34.1	(9.4)	29.4	(8.3)	22.8	(5.5)
B3000	9.0	(3.0)	17.9	(6.1)	38.5	(4.9)	62.8	(8.5)	69.6	(5.2)	81.2	(3.9)	20.7	(3.9	9)	18.3	(3.8)	16.2	(3.6)	13.3	(2.5)	10.5	(1.9)	7.1	(1.5)
D 5000	3.0	(7.6)	29.3	(10.2)	36.1	(19.0)	50.3	(14.0)	69.3	(6.5)	73.8	(8.0)	42.2	(11	1.8)	37.3	(12.8)	33.7	(11.2)	28.5	(9.3)	24.6	(8.1)	19.3	(5.4)
B4000	4.1	(1.6)	10.9	(4.7)	23.6	(0.9)	43.2	(3.1)	59.0	(4.4)	74.1	(3.6)	14.0	i (1.9	9)	13.4	(1.5)	12.2	(1.6)	10.2	(1.6)	8.4	(1.6)	5.9	(1.6)
Biooo	1.6	(5.6)	23.1	(8.1)	30.0	(14.8)	44.9	(12.7)	64.3	(5.4)	71.6	(6.6)	35.9	(12	2.7)	32.3	(12.8)	29.4	(11.1)	24.9	(8.5)	21.6	(7.3)	17.2	(5.0)

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 58 • No. 4 • April 2017

B5000	5.2	(2.3)	12.0	(4.4)	27.7	(2.8)	50.6	(6.0)	62.0	(4.1)	75.9	(3.3)	 14.5	(2.7)	12.9	(2.8)	11.5	(2.8)	9.7	(2.1)	8.0	(1.8)	5.6	(1.4)
	0.8	(4.5)	19.0	(6.8)	25.5	(12.0)	40.5	(11.7)	59.8	(4.6)	69.4	(5.8)	31.8	(13.1)	29.0	(12.6)	26.5	(10.8)	22.4	(7.8)	19.6	(6.6)	15.7	(4.5)
B6000	4.2	(2.1)	10.2	(3.9)	24.1	(2.4)	45.9	(5.2)	58.7	(3.7)	73.6	(3.2)	12.7	(2.4)	11.4	(2.5)	10.2	(2.5)	8.6	(2.0)	7.2	(1.7)	5.1	(1.4)
	0.3	(3.8)	16.1	(6.0)	22.2	(10.1)	36.8	(11.0)	55.9	(4.0)	67.3	(5.3)	29.0	(13.3)	26.6	(12.4)	24.4	(10.6)	20.5	(7.2)	18.1	(6.0)	14.6	(4.2)
B7000	3.4	(1.9)	8.9	(3.5)	21.2	(2.1)	41.9	(4.7)	55.7	(3.5)	71.4	(3.0)	 11.4	(2.3)	10.2	(2.3)	9.1	(2.3)	7.7	(1.8)	6.5	(1.6)	4.8	(1.3)
	0.0	(3.2)	14.0	(5.4)	19.6	(8.7)	33.7	(10.4)	52.5	(3.5)	65.3	(4.9)	27.0	(13.3)	24.9	(12.2)	22.8	(10.4)	19.1	(6.6)	16.9	(5.5)	13.8	(3.9)
B8000	2.9	(1.8)	7.9	(3.2)	18.8	(2.0)	38.5	(4.2)	52.9	(3.2)	69.4	(2.9)	 10.4	(2.2)	9.3	(2.1)	8.3	(2.1)	7.1	(1.7)	6.0	(1.5)	4.5	(1.3)
	-1.0	(2.9)	9.8	(4.3)	15.9	(6.3)	29.3	(9.9)	44.1	(2.6)	64.0	(4.2)	26.6	(12.4)	24.9	(11.0)	22.8	(9.1)	18.7	(4.8)	16.4	(3.5)	13.1	(2.4)
B9000	2.5	(1.6)	7.0	(2.9)	16.9	(1.9)	35.5	(3.8)	50.3	(3.0)	67.5	(2.8)	 9.6	(2.1)	8.6	(2.0)	7.7	(1.9)	6.5	(1.6)	5.7	(1.4)	4.2	(1.2)
2,000	-1.2	(2.7)	8.9	(4.1)	14.5	(5.7)	27.3	(9.3)	41.7	(2.4)	62.0	(4.0)	25.4	(12.5)	23.8	(11.1)	21.7	(9.1)	17.6	(4.5)	15.5	(3.3)	12.5	(2.3)
B10000	2.1	(1.6)	6.3	(2.7)	15.3	(1.8)	32.9	(3.5)	47.9	(2.8)	65.7	(2.7)	 8.9	(2.0)	7.9	(1.8)	7.1	(1.8)	6.1	(1.5)	5.3	(1.3)	4.1	(1.2)
	-0.7	(2.3)	9.8	(4.1)	14.5	(6.1)	27.1	(8.7)	43.9	(2.7)	59.9	(4.3)	23.1	(13.5)	21.4	(11.9)	19.6	(10.2)	16.1	(5.6)	14.5	(4.7)	12.0	(3.3)

Error (1SD) shown in brackets.

Greyed and white values are with a total phantom activity of 2.7GBq (2100kBq/cc sphere specific activity) and 0.9GBq (700kBq/cc sphere specific activity) respectively.

* 2 iterations, 24 subsets, no filtering, SharpIR, 256x256

† 3 iterations, 18 subsets, 6.0mm, heavy filter, SharpIR, 192x192

‡ 2 iterations, 12 subsets, 7.0mm, heavy filter, SharpIR, 256x256

SUPPLEMENTAL TABLE 2.

Results of the Wilcoxon signed rank test used to compare the CR and BV for B4000 against OSEM PSF, Kao, B1000 and QUEST reconstructions respectively for a total phantom activity of 2.7GBq and 0.9BGq. Figures in bold represent a significant difference, with CR being higher for OSEM PSF, Kao, B1000 and QUEST compared to B4000, and BV being lower for B4000 as compared to PSF, Kao, B1000 and QUEST.

		С	R	BV				
	Recon		B	4000				
Sphere size		2.7GBq	0.9GBq	2.7GBq	0.9GBq			
37mm	OSEM PSF	p=0.043 z=-2.023	p=0.08 z=1.753	p=0.043 z=-2.023	p=0.043 z=-2.023			
28mm	OSEM PSF	p=0.043 z=-2.023	p=0.138 z=-1.483	p=0.043 z=-2.023	p=0.043 z=-2.023			
22mm	OSEM PSF	p=0.043 z=-2.023	p=0.138 z=-1.483	p=0.043 z=-2.023	p=0.138 z=1.483			
17mm	OSEM PSF	p=0.043 z=-2.023	p=0.043 z=-2.023	p=0.043 z=-2.023	p=0.225 z=-1.214			
37mm	Kao	p=0.043 z=2.023	p=0.686 z=0.405	p=0.043 z=2.023	p=0.043 z=2.023			
28mm	Kao	p=0.043 z=2.023	p=0.345 z=0.944	p=0.043 z=2.023	p=0.043 z=2.023			
22mm	Kao	p=0.043 z=2.023	p=0.138 z=1.483	p=0.043 z=2.023	p=0.043 z=2.023			
17mm	Kao	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023			
37mm	B1000	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=-2.023			
28mm	B1000	p=0.043 z=-2.023	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023			
22mm	B1000	p=0.043 z=2.023	p=0.043 z=-2.023	p=0.043 z=-2.023	p=0.043 z=-2.023			

17mm	B1000	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=-2.023	p=0.043 z=-2.023
37mm	QUEST	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023
28mm	QUEST	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023
22mm	QUEST	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023
17mm	QUEST	p=0.080 z=1.753	p=0.043 z=2.023	p=0.043 z=2.023	p=0.043 z=2.023