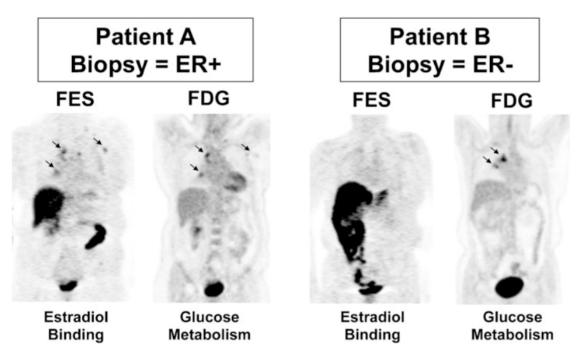

FIGURE 1. Imaging examples from two patients of baseline ¹⁸F-FES PET and ¹⁸F-FDG PET and follow-up posttherapy ¹⁸F-FDG PET.

Dashed arrows point out normal liver ¹⁸F-FES uptake. **(A)** Pretreatment ¹⁸F-FES PET and ¹⁸F-FDG PET scans both demonstrate uptake in numerous osseous metastases, with response seen in posttherapy ¹⁸F-FDG PET scan. **(B)** Pretreatment ¹⁸F-FES PET scan does not demonstrate ¹⁸F-FES uptake in osseous metastases seen on pretreatment ¹⁸F-FDG PET scan (solid arrow). Progressive disease is seen on posttherapy ¹⁸F-FDG PET scan. (Reprinted with permission of (*25*).)



(A) Baseline ¹⁸F-FES SUV shown for responders vs. nonresponders to tamoxifen. No responders demonstrated SUV < 1.5. (Reprinted with permission of (*24*).) (B) Baseline mean ¹⁸F-FES SUV is shown for responders (R) and nonresponders (NR) to salvage endocrine treatment. No responders demonstrated SUV < 1.5. SD = stable disease, PD = progressive disease. (Reprinted with permission of (*25*).)

FIGURE 3. Flowchart diagram illustrating potential roles for molecular imaging companion diagnostics.

Baseline ¹⁸F-FES PET would first establish presence of ER at the tumor site, followed by repeat ¹⁸F-FDG PET after initiation of therapy to assess pharmacodynamic response. (Reprinted with permission of (*32*).)

FIGURE 4. Imaging examples of two patients who underwent pretreatment ¹⁸F-FES PET and ¹⁸F-FDG PET imaging.

Left panel: Patient A had axillary and mediastinal lesions (arrows) seen on both ¹⁸F-FES PET and ¹⁸F-FDG PET scans. Core biopsy of the axillary lesion was ER-positive by immunohistochemistry. *Right panel*: Patient B had mediastinal lesions (arrows) seen only on the ¹⁸F-FDG PET scan. Needle biopsy of a vertebral lesion was ER-negative by immunohistochemistry. (Reprinted with permission of (*16*).)

	# of pts	Study Purpose	Summary of Findings
Mintun et al., 1988 (<i>17</i>)	13	First attempt at imaging breast masses with ¹⁸ F-FES PET	¹⁸ F-FES uptake seen at site of primary tumor, axillary nodal metastases, and one distant metastatic site; 0.96 correlation between ¹⁸ F-FES uptake and ER concentration measured by in vitro radioligand binding assay
McGuire et al., 1991 (<i>41</i>)	16	Evaluate potential of ¹⁸ F-FES PET for imaging metastatic breast cancer; assess changes in ¹⁸ F- FES uptake before and after initiation of endocrine therapy	Sensitivity 93% for ¹⁸ F-FES PET in detecting metastatic lesions; ¹⁸ F-FES uptake decreased in lesions after initiation of hormonal therapy, suggesting receptor-mediated uptake of ¹⁸ F-FES
Dehdashti et al., 1995 (2 <i>1</i>)	53	Compare ¹⁸ F-FES PET and ¹⁸ F- FDG PET to in vitro radioligand and immunohistochemical ER expression, compare ¹⁸ F-FDG PET with tumor ER status	88% correlation between ¹⁸ F-FES uptake and in vitro ER expression; no correlation between ¹⁸ F-FDG uptake and ER status or ¹⁸ F-FDG and ¹⁸ F-FES uptake
Mortimer et al., 1996 (<i>33</i>)	43	Evaluate ability of ¹⁸ F-FDG PET and ¹⁸ F-FES PET to predict response to hormonal therapy; correlate ¹⁸ F-FES PET to in vitro ER assay	Using threshold ¹⁸ F-FES SUV of 1.0, PPV 70%, NPV 66% for treatment response; sensitivity 76%, specificity 100% for in vitro ER status
Dehdashti et al., 1999 (2 <i>3</i>)	11	Correlate pre- and posttamoxifen initiation ¹⁸ F-FDG PET and ¹⁸ F- FES PET imaging to treatment response	¹⁸ F-FDG PET demonstrated subclinical metabolic flare in treatment responders; responders had higher pretreatment ¹⁸ F-FES uptake and greater decrease in ¹⁸ F-FES uptake after treatment initiation
Mortimer et al., 2001 (24)	40	Determine ability of ¹⁸ F-FDG PET and ¹⁸ F-FES PET to detect metabolic flare and changes in tumor ER availability after initiation of tamoxifen	¹⁸ F-FDG PET demonstrated subclinical metabolic flare in treatment responders; responders had higher pretreatment ¹⁸ F-FES uptake and greater decrease in ¹⁸ F-FES uptake after treatment initiation
Linden et al., 2006 (25)	47	Determine ability of pretreatment ¹⁸ F-FES PET to predict response to salvage hormonal therapy in heavily pretreated metastatic breast cancer patients	Significant association between quantitative ¹⁸ F-FES PET and treatment response; sensitivity of 100%, specificity of 42% with threshold SUV of 1.5
Peterson et al., 2008 (<i>18</i>)	17	Compare ¹⁸ F-FES PET to qualitative and semiquantitative immunohistochemical assay ER expression	SUV threshold of 1.1 demonstrated 94% agreement with immunohistochemistry results
Dehdashti et al., 2009 (<i>26</i>)	51	Determine if ¹⁸ F-FDG PET metabolic flare induced by estradiol challenge and baseline ¹⁸ F-FES PET correlate with treatment response to AI or fulvestrant	Responders had higher baseline ¹⁸ F-FES uptake; threshold ¹⁸ F-FES SUV of 2.0 had PPV 50% and NPV 81% for response; only responders demonstrated metabolic flare
Tonkin et al., 2010 (<i>34</i>)	38	Assess utility of pretreatment ¹⁸ F- FES PET in predicting response to hormone therapy and correlate ¹⁸ F-FES PET with ¹⁸ F-FDG PET results in metastatic breast cancer	53% of patients had lesions with discordant ¹⁸ F-FES and ¹⁸ F-FDG uptake; discordant lesions demonstrated only stable disease at best
Kurland et al., 2011 (<i>35</i>)	91	Describe within-patient and between-patient heterogeneity of ¹⁸ F-FES PET uptake	Within-patient ¹⁸ F-FES uptake and ratio of ¹⁸ F-FES to ¹⁸ F-FDG uptake clustered around patient's average value; wide variance of average ¹⁸ F-FES uptake between patients (intraclass correlation coefficient 0.6); 37% had low or absent ¹⁸ F-FES uptake
Linden et al., 2011 (<i>37</i>)	30	Utilize ¹⁸ F-FES PET to evaluate in vivo pharmacodynamics of ER binding of various endocrine therapies	Treatment with tamoxifen or fulvestrant demonstrated greater degree of blockade than with Als; rate of complete blockade greater with tamoxifen than with fulvestrant
Peterson et al., 2011 (22)	239	Assess factors that affect quantitative ¹⁸ F-FES uptake	¹⁸ F-FES uptake had inverse relationship with SHBG; no relationship with plasma estradiol, patient age, or rate of ¹⁸ F-FES metabolism; direct relationship with body mass index but not lean body mass

TABLE 1. Clinical ¹⁸F-FES PET studies related to breast cancer

van Kruchten et al.,	33	Evaluate utility of ¹⁸ F-FES PET in	¹⁸ F-FES PET utilized to evaluate equivocal lesions
2012 (65)	33	ER-positive breast cancer patients presenting with a clinical dilemma	on standard workup, ER status of patients with metastases, and origin of metastatic lesions. ¹⁸ F-FES PET improved diagnostic understanding in 88% of patients and resulted in change of therapy in 48%
Gemignani et al., 2013 (<i>20</i>)	48	Compare ¹⁸ F-FES PET to in vitro ER expression in patients with operable primary breast cancer	Sensitivity 85%, specificity 75% with threshold ¹⁸ F- FES SUV of 1.5; ¹⁸ F-FES SUV did not correlate with ER and PR gene expression
Yang et al., 2013 (<i>36</i>)	32	Assess heterogeneity of ER expression with ¹⁸ F-FES PET and ¹⁸ F-FDG PET	33.4-fold difference in ¹⁸ F-FES uptake between patients, 8.2-fold difference in ¹⁸ F-FES uptake among lesions in the same patient; 28.1% of patients had discordant ¹⁸ F-FES and ¹⁸ F-FDG uptake
Peterson et al., 2014 (<i>16</i>)	19	Evaluate pretreatment ¹⁸ F-FES PET association with treatment response and ER expression in newly metastatic breast cancer	No patient with baseline ¹⁸ F-FES SUV < 1.5 had response; all patients with ER-negative biopsy had low average ¹⁸ F-FES uptake and at least one ¹⁸ F- FES-negative site
Wang et al., 2015 (39)	30	Utilized ¹⁸ F-FES PET to validate ER engagement by novel ER α antagonist and degrader	Posttherapy ¹⁸ F-FES PET demonstrated > 90 % reduction in ¹⁸ F-FES uptake in 90% of patients
van Kruchten et al., 2015 (2 <i>8</i>)	19	Evaluate ¹⁸ F-FES PET in predicting response to additive low-dose estradiol therapy in patients with endocrine-refractory metastatic breast cancer	¹⁸ F-FES SUV threshold of 1.5 had PPV 60% and NPV 80% for response to treatment
van Kruchten et al., 2015 (<i>38</i>)	16	Assess change in ¹⁸ F-FES uptake during fulvestrant therapy in patients with ER-positive metastatic breast cancer	38% demonstrated incomplete reduction in ER availability (< 75% reduction in ¹⁸ F-FES uptake and residual SUV \geq 1.5), which was associated with early progression

¹⁸F-FES = ¹⁸F-fluoroestradiol. ER = estrogen receptor. PET = positron emission tomography. ¹⁸F-FDG = ¹⁸F-fluorodeoxyglucose. SUV = standardized uptake value. PPV = positive predictive value. NPV = negative predictive value. SHBG = sex hormone binding globulin.

	Patient Population	Key Outcomes
Mintun et al., 1988 (<i>17</i>)	13 postmenopausal women with primary breast masses suspected to be primary breast cancers	High correlation ($r = 0.96$) between tumor ¹⁸ F-FES uptake and ER concentration measured by in vitro radioligand binding; poor correlation with progestin-receptor concentration
Dehdashti et al., 1995 (<i>21</i>)	32 patients with primary breast masses (Group 1), 21 patients with recurrent or metastatic breast cancer (Group 2)	SUV \geq 1.0 considered positive; 82% agreement between ¹⁸ F-FES PET and in vitro assay (combination of radioligand binding and immunohistochemistry) in Group 1; 94% agreement in Group 2; overall 88% agreement between ¹⁸ F-FES PET and in vitro assays
Mortimer et al., 1996 (<i>33</i>)	43 patients with locally advanced or metastatic breast cancer	SUV \geq 1.0 considered positive; sensitivity of 76% and specificity of 100% compared to in vitro assay (combination of radioligand binding and immunohistochemistry)
Dehdashti et al., 1999 (2 <i>3</i>)	11 patients with ER- positive breast cancer with newly diagnosed metastatic disease	All 11 patients had SUV > 1.0
Peterson et al., 2008 (<i>18</i>)	17 patients with newly diagnosed or recurrent breast cancer	SUV vs. qualitative immunohistochemistry had Spearman correlation coefficient (ρ) of 0.62; SUV vs. semiquantitative Allred had $\rho = 0.72$; SUV vs. semiquantitative immunohistochemical index had $\rho = 0.73$; 94% agreement between SUV and immunohistochemistry with SUV threshold of 1.1
Gemginani et al., 2013 (<i>20</i>)	48 patients with primary breast cancer at least 1 cm in size without prior treatment	SUV > 1.5 considered positive; sensitivity of 85%, specificity of 75%, PPV 94%, NPV 50%, area under ROC curve of 0.85

TABLE 2. Studies correlating ¹⁸F-FES PET with in vitro assay

¹⁸F-FES = ¹⁸F-fluoroestradiol. ER = estrogen receptor. SUV = standardized uptake value. PET = positron emission tomography. PPV = positive predictive value. NPV = negative predictive value. ROC = receiver operating characteristic.

	Patient Population	Key Outcomes
Mortimer et al., 1996 (33)	43 patients with locally advanced or metastatic breast cancer	Baseline SUV \geq 1.0 considered positive; PPV 70%, NPV 66% for treatment response
Dehdashti et al., 1999 (2 <i>3</i>)	11 patients with ER-positive breast cancer with newly diagnosed metastatic disease, for whom tamoxifen treatment was planned	7 responders, 4 nonresponders; responders trended toward higher baseline SUV (4.6 \pm 2.2 vs. 2.5 \pm 1.9; <i>P</i> = 0.09); all responders had baseline SUV > 2.2
Mortimer et al., 2001 (24)	40 endocrine therapy naïve postmenopausal women with ER-positive locally advanced, recurrent, or metastatic breast cancer, for whom tamoxifen treatment was planned	21 responders, 19 nonresponders; responders had higher mean baseline SUV (4.3 ± 2.4 vs. 1.8 ± 1.4 ; $P = 0.0007$)
Linden et al., 2006 (25)	47 pretreated patients with an ER-positive primary tumor, presenting with recurrent or metastatic breast cancer	No patient with baseline SUV < 1.5 had objective response to salvage endocrine therapy
Dehdashti et al., 2009 (<i>26</i>)	51 postmenopausal women with locally advanced or metastatic ER-positive breast cancer, for whom treatment with an AI or fulvestrant was planned	17 responders, 34 nonresponders; responders had higher mean baseline SUV (3.5 ± 2.5 vs. 2.1 ± 1.8 ; $P = 0.0049$); with threshold SUV ≥ 2.0 , PPV of 50% and NPV of 81% for response
Peterson et al., 2014 (<i>16</i>)	19 patients with newly diagnosed metastatic cancer with ER-positive primary tumor	2 of 5 patients with baseline SUV \leq 1.5 were available for response assessment and both had progression of disease
van Kruchten et al., 2015 (28)	19 patients with ER-positive metastatic breast cancer that progressed after ≥ 2 lines of endocrine therapy, with previous response to endocrine therapy	Median SUV _{max} > 1.5 considered positive; PPV 60% and NPV 80% for treatment response
van Kruchten et al., 2015 (38)	16 postmenopausal women with ER-positive metastatic breast cancer with progression of disease after \geq 2 lines of endocrine therapy	No significant difference in baseline median SUV_{max} between responders and nonresponders (3.1 vs. 2.5; $P = 0.6$)

TABLE 3. Studies evaluating ¹⁸F-FES PET as predictor of response to endocrine therapy

SUV = standardized uptake value. PPV = positive predictive value. NPV = negative predictive value. ER = estrogen receptor. AI = aromatase inhibitor.

	-	
	Patient Population	Key Outcomes
Dehdashti et al., 1995 (<i>21</i>)	53 patients total, 21 of whom had recurrent or metastatic breast cancer, 13 of whom had multiple sites evaluated on ¹⁸ F-FES PET	2 of 13 patients (15%) had discordant ¹⁸ F-FES uptake in at least one site
Mortimer et al., 1996 (33)	43 patients with locally advanced or metastatic breast cancer; 17 of whom had multiple sites evaluated on ¹⁸ F-FES PET	4 of 17 patients (24%) had discordant ¹⁸ F-FES uptake in one site
Linden et al., 2006 (25)	47 pretreated patients with an ER- positive primary tumor, presenting with recurrent or metastatic breast cancer	6 of 47 (13%) patients had at least one qualitatively ¹⁸ F-FES-negative site
Dehdashti et al., 2009 (<i>26</i>)	51 postmenopausal women with locally advanced or metastatic ER-positive breast cancer, for whom treatment with an AI or fulvestrant was planned	16 of 51 (31%) patients had mean SUV \leq 1.0
Tonkin et al., 2010 (<i>34</i>)	38 patients with ER-positive metastatic breast cancer undergoing 1st-, 2nd-, or 3rd-line hormone therapy	20 of 38 (53%) had discordant ¹⁸ F-FES uptake in at least one site (¹⁸ F-FES-negative, ¹⁸ F-FDG-positive)
Kurland et al., 2011 (<i>35</i>)	91 patients with prior ER-positive biopsy scheduled to initiate, resume, or change endocrine therapy	SUV for individual lesions ranged from 0.0 to 10.2; average SUV ranged from 0.2 to 6.7 between patients, intraclass correlation coefficient was 0.60; 34 of 91 (37%) patients had mean SUV < 1.0; small number of patients with discordant ¹⁸ F- FES uptake
van Kruchten et al., 2012 (65)	33 patients with history of ER-positive breast cancer presenting with equivocal lesions on conventional workup, metastatic disease, or lesions of unknown origin	Wide variance in SUV seen in metastatic lesions (range, 1.2–18.81); 45% of patients had both ¹⁸ F- FES-positive and ¹⁸ F-FES-negative lesions
Yang et al., 2013 (36)	32 patients with new, recurrent, or metastatic breast cancer	SUV _{max} ranged from 0.5 to 16.7 between patients (33.4-fold difference); SUV _{max} ranged from 1.0 to 8.2 (8.2-fold difference) within a single individual; 9 of 32 (28%) patients had both ¹⁸ F-FES-positive and ¹⁸ F-FES-negative lesions
Peterson et al., 2014 (16)	19 patients with newly diagnosed metastatic cancer with ER-positive primary tumor	5 of 19 (26%) patients had average SUV \leq 1.5; 6 of 19 (32%) had at least one qualitatively ¹⁸ F-FES-negative site
van Kruchten et al., 2015 (28)	19 patients with ER-positive metastatic breast cancer that progressed after ≥ 2 lines of endocrine therapy	6 of 19 (32%) patients had both ¹⁸ F-FES-positive and ¹⁸ F-FES-negative lesions; wide variance of SUV _{max} between lesions (range, 0.6–24.3) and patients (1.1–15.5)
van Kruchten et al., 2015 (38)	16 postmenopausal women with ER- positive metastatic breast cancer with progression of disease after \geq 2 lines of endocrine therapy	5 of 16 (31%) patients had at least one ¹⁸ F-FES- negative metastatic lesion

TABLE 4. Studies utilizing ¹⁸F-FES PET to demonstrate heterogeneity of disease

 18 F-FES = 18 F-fluoroestradiol. PET = positron emission tomography. ER = estrogen receptor. AI = aromatase inhibitor. SUV = standardized uptake value. 18 F-FDG = 18 F-fluorodeoxyglucose.

	Patient Population	Koy Outcomes
McGuire et al., 1991 (<i>41</i>)	Patient Population 16 patients with recurrent or metastatic breast cancer; 7 of whom had evaluable ¹⁸ F-FES PET imaging before and after initiation of endocrine therapy	Key Outcomes Mean lesion SUV decreased from 2.2 (\pm 1.23) to 0.80 (\pm 0.42) after initiation of endocrine therapy
Dehdashti et al., 1999 (<i>23</i>)	11 patients with ER-positive breast cancer with newly diagnosed metastatic disease, for whom tamoxifen treatment was planned	7 responders, 4 nonresponders; responders had greater posttreatment mean decrease in SUV (2.7 \pm 1.7 vs. 0.8 \pm 0.5; <i>P</i> = 0.04)
Mortimer et al., 2001 (2 <i>4</i>)	40 endocrine therapy-naïve postmenopausal women with ER- positive locally advanced, recurrent, or metastatic breast cancer, for whom tamoxifen treatment was planned	21 responders, 19 nonresponders; responders had higher percentage decrease in SUV from baseline ($-54.8\% \pm 14.2\%$ vs. $-19.4\% \pm 17.3\%$; P = 0.0003) and larger mean change in SUV (-2.5 ± 1.8 vs. -0.5 ± 0.6 ; $P = 0.0003$)
Linden et al., 2011 (<i>37</i>)	30 patients with metastatic breast cancer who had serial ¹⁸ F-FES PET imaging while undergoing endocrine therapy	Patients on ER blockers (tamoxifen and fulvestrant) had lower average SUV during treatment vs. patients on nonblockers (AIs) (1.5 vs. 2.2; $P = 0.04$); patients on blockers had higher average percentage decline in SUV (54% vs. 14%; $P < 0.001$); 100% of patients treated with tamoxifen vs. 36% of patients treated with fulvestrant demonstrated complete ER blockade (SUV ≤ 1.5)
Wang et al., 2015 (<i>39</i>)	30 patients with advanced or metastatic ER-positive breast cancer treated with ARN-810 (novel ER α antagonist and degrader)	27 of 30 (90%) patients demonstrated > 90% decrease of SUV_{max} on posttherapy scan
van Kruchten et al., 2015 (<i>38</i>)	16 postmenopausal women with ER- positive metastatic breast cancer with progression of disease after ≥ 2 lines of endocrine therapy	Patients with clinical benefit from fulvestrant (no radiologic or clinical progression of disease for at least 24 weeks) had greater median change in SUV (-88% vs58%; $P = 0.025$); patients with incomplete ER blockade (<75% decrease in ¹⁸ F-FES uptake and residual SUV \geq 1.5) had shorter median progression free survival (3.3 months vs. 11.7 months; $P < 0.05$)

TABLE 5. Studies evaluating impact of endocrine therapy on ¹⁸F-FES uptake

¹⁸F-FES = ¹⁸F-fluoroestradiol. PET = positron emission tomography. SUV = standardized uptake value. ER = estrogen receptor. AI = aromatase inhibitor.