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Supplemental Appendix A. Detailed Description of Treatment Regimen and Image 

Acquisition 

Treatment Regimen 

All patients were treated with external beam radiation therapy and concurrent 

chemotherapy, which was preceded by induction chemotherapy in a subgroup of patients. 

A total radiation dose of 45 or 50.4 Gy was delivered in daily fractions of 1.8 Gy using 

three-dimensional computed tomography-based treatment planning (3D-CT), intensity 

modulated radiation therapy (IMRT), or proton therapy. Chemotherapy generally 

consisted of a fluoropyrimidine (i.v. or oral) with either a platinum compound or a taxane. 

After completion of CRT, at the discretion of the treating surgeon either a transthoracic 

(Ivor-Lewis), transhiatal, total (three-field technique), or minimally invasive 

esophagectomy was performed with curative intent. 

 

Image Acquisition 

Integrated 18F-FDG PET/computed tomography (CT) scans were performed on a 

dedicated PET/CT system (Discovery RX, ST, STE, or HR; GE Medical Systems, 

Milwaukee [WI], USA). Patients were instructed to fast for at least 6 hours before 18F-

FDG PET and a glucose level within the normal range (80-120 mg/dl) was confirmed. 

Before 18F-FDG PET, a CT without contrast enhancement was acquired (120 kV peaks, 

300 mA, 0.5 seconds rotation, pitch of 1.375, slice thickness 3.75mm, and slice interval 

3.27 mm) for attenuation correction purposes. 18F-FDG PET scans were acquired 60-90 

minutes after administration of 18F-FDG with a dose of 555-740 MBq, in either two-

dimensional (2D) or three-dimensional (3D) acquisition mode at 3-5 minutes per bed 

position. All images were composed of 128 x 128 pixels with voxel dimensions of 5.47 x 

5.47 x 3.27 mm. Images were reconstructed using either attenuation-weighted ordered-

subset expectation maximization in 2D (OSEM2D) or iterative reconstruction in 3D (IR3D) 
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images. Specifically, OSEM2D was used in 22 (20%) of 111 patients scanned on 

Discovery RX, 18 (22%) of 81 patients on Discovery STE, all (100%) of 16 patients on 

Discovery ST, and all (100%) of 9 patients on Discovery HR. In all cases two iterations, 

20-21 subsets, and a 6 mm post-processing Gaussian blurring filter were used. 

  

Supplemental Appendix B. Rationale for Tumor Delineation Method 

In the current study a semi-automatic gradient-based delineation method was used that 

has recently been validated in a multi-observer study reporting superior accuracy, 

consistency and robustness for target volume contouring compared with manual and 

threshold methods (1). For the purpose of this study we have deliberately chosen not to 

use thresholding or manual delineation techniques. Although thresholding techniques are 

most frequently used due to their simple implementation and high efficiency, limitations 

include difficulty in decision-making for threshold and high sensitivity to tumor 

heterogeneity, motion artifacts, noise and contrast variations; leading to disappointing 

results for small, heterogeneous or non-spherical tumors (2,3). Manual delineation is 

simple to apply, but besides time-consuming it is susceptible to window-level settings, 

suffers from intra- and inter-observer variability and depends on experience of the reader 

(2).  
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Supplemental Appendix C. Detailed Description of Predictor Selection and Model 

Building 

 

Clinical Parameters (Model 1) 

The potential clinical predictors of pathCR determined at baseline that were included in 

the analysis were gender, age, body mass index (BMI), co-morbidities (including 

hypertension, cardiac co-morbidity, diabetes mellitus, and chronic obstructive pulmonary 

disorder), smoking, Karnofsky performance status, year of patient accrual, tumor location, 

tumor length based on pre-treatment endoscopic ultrasound (EUS), histologic 

differentiation grade, signet ring cell adenocarcinoma (yes vs. no), clinical T-stage, and 

clinical N-stage. TNM-staging was performed in accordance with the seventh edition of 

the American Joint Committee on Cancer staging manual (4). Treatment-related clinical 

predictors included in the analysis were induction chemotherapy (yes vs. no), total 

radiation dose, radiation treatment modality, chemotherapy regimen, time interval 

between completion of CRT and surgery, and the result of post-CRT endoscopic biopsy.  

 

Subjective Assessment 18F-FDG PET (Model 2) 

Clinical complete response based on subjective assessment of post-chemoradiation 18F-

FDG PET scans by experienced nuclear medicine physicians was defined as having a 

physiologic level of SUVmax at the original primary tumor site or a higher than normal 

SUVmax with an 18F-FDG uptake distribution following an esophagitis pattern (5).  

 

Conventional Quantitative 18F-FDG PET Features (Model 3) 

The following four conventional quantitative features were extracted from the VOIs of 

baseline and post-chemoradiation 18F-FDG PET scans: SUVmax, SUVmean, MTV and TLG. 

The TLG was calculated by multiplying MTV by SUVmean (6). In addition, the relative 
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changes (in %) of these parameters between baseline and post-chemoradiation scans 

were calculated and included in the analysis.   

 

Comprehensive Quantitative 18F-FDG PET Features (Model 4)  

Various additional features that characterize global, regional and local 18F-FDG uptake 

intensity distribution and geometry of each tumor were computed from the VOIs of both 

baseline and post-chemoradiation 18F-FDG PET scans as potential predictors. Also, for 

each feature the relative change (in %) between the two scans was calculated and 

included in the analysis.  

  

First-order features were examined to describe global texture related to the SUV 

frequency distribution (i.e. SUV histogram) within the VOI, and included SUVpeak (defined 

as the average intensity of a 3x3x3 voxel cube centered at the SUVmax (7)), standard 

deviation, cumulative histogram, skewness, and kurtosis, among others (8). Second-

order features describing local texture were calculated using intensity co-occurrence 

matrices (ICMs) and included parameters such as entropy, energy, homogeneity, and 

dissimilarity. ICMs determine how often a pixel of intensity i finds itself within a certain 

relationship to another pixel of intensity j (8).  

 

Also, both higher-order local and regional texture features were included in the analysis. 

Higher-order local texture features were calculated from neighborhood intensity 

difference matrices (NIDMs) reflecting differences between each voxel and its 

neighboring voxels and included busyness, coarseness, contrast, complexity and texture 

strength. Regional intensity variations were reflected by higher-order regional texture 

features calculated from voxel alignment (e.g. run-length statistics). A run is defined as a 

string of consecutive pixels which have the same intensity along a specific linear 
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orientation. Fine textures tend to contain more short runs with similar intensities, whereas 

coarse textures contain more long runs with different intensities. 

 

For features using a histogram for calculation, a uniform quantization into 100 bins was 

used. In previous studies, a quantization of at least 64 bins was shown to provide 

sufficient texture feature reproducibility and robustness (9-11). In those studies, 64 bins 

were recommended because it allowed for SUV increments of 0.25 in their range of 

encountered SUVs (~4-20), whereas in the current series with a wider range of 

encountered SUVs, 100 bins allowed for similar SUV increments. Calculations of the 

NIDM and ICM features were performed for 3 dimensions (i.e. each reference pixel had 

26 neighbors [NIDM] and 13 unique directions [ICM]) (12). This method allowed NIDM 

features to use all adjacent pixel values in calculations (and not only those within the 

same axial slice) and ICM features to be non-directional (12). 

 

Pre-selection Method for Inclusion in Multivariable Analysis 

Because many potential predictors were studied in univariable analysis, a standardized 

pre-selection of variables for multivariable analysis was performed according to the 

following three rules. First, only parameters with a p-value of ≤0.25 in univariable analysis 

were pre-selected for multivariable analysis. Second, from highly correlated pairs of 

quantitative 18F-FDG PET parameters (i.e. Spearman rank correlation coefficient r≥0.6) 

only the one parameter with the lowest p-value in univariable analysis was pre-selected. 

This rule was applied because high correlations between most of the 18F-FDG PET 

features were expected (9), resulting in the statistical problem of (multi)collinearity in 

which unstable estimations of regression coefficients for individual predictors occur 

(13,14). Third, only quantitative 18F-FDG PET features with a sufficient robustness (i.e. 

ICC of ≥0.7) as determined by test-retest analysis were considered eligible for 

multivariable analysis.   
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Model Development 

Among pre-selected variables for multivariable modeling, no missing values were found.  

Four multivariable logistic regression models were constructed to study the incremental 

value of subjective and quantitative assessment of 18F-FDG PET for the prediction of 

pathCR beyond clinical predictors. Initially, a prediction model with pre-selected clinical 

parameters only was constructed using stepwise backward elimination of the least 

significant parameters associated with pathCR based on the Akaike’s Information 

Criterion (AIC) (15) (Model 1). Subsequently, the final predictors of the clinical model were 

forced into a second model incorporating the ‘subjective assessment of post-

chemoradiation 18F-FDG PET’ parameter to study the incremental value of this 

assessment beyond clinical predictors (Model 2). Similarly, Model 2 was forced into a 

third model incorporating conventional quantitative 18F-FDG PET features (Model 3), and 

remaining parameters in Model 3 were forced into a fourth model incorporating 

comprehensive 18F-FDG PET texture and geometry features (Model 4). The AIC-based 

stepwise backward elimination was repeated for each model with a forced entry (e.g. 

prohibited elimination) of the parameters of the previous model.      

 

Model Performance and Validation 

Model discrimination and calibration results were evaluated for all four models. 

Discrimination refers to the model’s ability to distinguish between patients with pathCR 

and patients with residual cancer and was assessed by c-indexes (15). Calibration refers 

to the agreement between the predicted probability of pathCR and the observed 

incidences and was evaluated by visual inspection of model calibration plots (15). Internal 

validation using the bootstrap method with 1000 repetitions was carried out to provide 

insight into potential over-fitting and optimism in model performance. The entire AIC-

based backward selection process was repeated in every bootstrap sample to additionally 
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account for the influences (e.g. bias) of the predictor selection steps. Bootstrapping 

allowed for calculation of bias-corrected c-indexes of the four models, and provided 

shrinkage factors that were used to adjust the estimated regression coefficients in the 

final four models for over-fitting and miscalibration (13). 

 

Clinical Benefit 

Diagnostic models such as built in the current study are typically evaluated only with 

measures of accuracy (e.g. ROC-curve analysis) that do not address clinical 

consequences. Therefore, a method called decision-curve analysis was developed for 

evaluating and comparing prediction models that incorporates clinical consequences and 

requires only the dataset on which the models are tested (16). This method assumes that 

the threshold probability of a certain outcome (e.g. pathCR) at which a patient would opt 

for a change in treatment (e.g. omission of surgery) weighs the relative harms of a false-

positive and a false-negative prediction. This theoretical relationship is then used to derive 

the “net benefit” of the prediction model across different threshold probabilities. For 

calculation of the net benefit, the proportion of all patients who are false-positive (e.g. 

incorrectly classified by the model as complete responder) is subtracted from the 

proportion who are true-positive (e.g. correctly classified by the model as complete 

responder), weighted by the relative harm of a false-positive and a false-negative result 

(i.e. the threshold probability). The “decision curve” is acquired by plotting the net benefit 

against the threshold probability. As such, the decision-curve analysis identifies the range 

of threshold probabilities in which a model is of value, the magnitude of the benefit, and 

which of several models is superior.  
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SUPPLEMENTAL TABLE 1 Test-retest intraclass correlation coefficients and univariable analysis for predicting pathologic 
complete response for first- and second-order 18F-FDG PET texture features.  
Group Feature           ICC 

(95% CI) 

Baseline Post-chemoradiation  Relative difference

OR (95% CI) p value OR (95% CI) p value  OR (95% CI) p value

Texture:  
First-order 
features 
(Global) 

SUVpeak (log) 0.91 (0.45-0.98) 0.62 (0.36-1.06) 0.088 0.24 (0.09-0.59) 0.003*  1.00 (0.99-1.01) 0.990 

Median SUV (log) 0.84 (0.04-0.97) 0.59 (0.31-1.12) 0.111 0.70 (0.23-2.08) 0.523  1.01 (1.00-1.02) 0.127 

Minimum SUV (log) 0.69 (0.00-0.95) 0.72 (0.33-1.54) 0.399 1.65 (0.52-5.23) 0.389  1.01 (1.00-1.02) 0.070 

Standard deviation [SD] (log) 0.86 (0.16-0.98) 0.73 (0.47-1.11) 0.146 0.41 (0.22-0.75) 0.004*  1.00 (0.99-1.01) 0.644 

Variance (log) 0.76 (0.00-0.96) 0.85 (0.69-1.06) 0.146 0.64 (0.47-0.86) 0.004*  1.00 (0.99-1.01) 0.623 

Range (log) 0.86 (0.17-0.98) 0.70 (0.45-1.07) 0.100 0.34 (0.19-0.56) <0.001*  0.99 (0.98-1.00) 0.236 

Interquartile range (log) 0.73 (0.00-0.95) 0.78 (0.52-1.16) 0.223 0.47 (0.26-0.82) 0.009*  1.00 (0.99-1.01) 0.613 

Cumulative histogram 0.85 (0.11-0.97) 1.02 (0.99-1.05) 0.236 1.09 (1.05-1.14) <0.001  1.01 (1.00-1.02) 0.078 

Root mean square (log) 0.85 (0.11-0.97) 0.61 (0.32-1.11) 0.113 0.61 (0.20-1.75) 0.370  1.01 (1.00-1.02) 0.164 

Skewness 0.79 (0.00-0.96) 0.91 (0.40-2.04) 0.824 0.43 (0.21-0.85) 0.017*  0.99 (0.98-1.00) 0.043* 

Kurtosis (log) 0.40 (0.00-0.90) 0.82 (0.28-2.34) 0.718 0.12 (0.04-0.35) <0.001*  0.99 (0.98-1.00) 0.024* 

Energy (log) 0.83 (0.00-0.97) 0.86 (0.70-1.05) 0.133 0.52 (0.38-0.70) <0.001*  1.00 (0.99-1.00) 0.531 

Entropy 0.93 (0.56-0.99) 0.77 (0.55-1.06) 0.115 0.44 (0.25-0.73) 0.002*  1.00 (0.98-1.00) 0.132 

Uniformity (log)  0.95 (0.68-0.99) 1.44 (0.91-2.31) 0.122 3.04 (1.44-6.76) 0.005*  1.00 (1.00-1.00) 0.562 

Texture:  
Second-order 
features 
(Local) 

Local maximum entropy (log) 0.86 (0.19-0.98) 0.13 (0.01-1.12) 0.065 0.03 (0.00-0.20) 0.001*  0.98 (0.96-1.01) 0.139 

Local mean entropy (log) 0.88 (0.30-0.98) 0.14 (0.02-1.17) 0.071 0.04 (0.00-0.28) 0.002*  0.99 (0.96-1.01) 0.184 

Local median entropy (log) 0.89 (0.34-0.98) 0.16 (0.02-1.32) 0.090 0.05 (0.01-0.34) 0.004*  0.99 (0.96-1.01) 0.211 

Local minimum entropy (log) 0.82 (0.00-0.97) 0.30 (0.04-2.19) 0.232 0.10 (0.02-0.55) 0.010*  0.99 (0.97-1.01) 0.211 

Local entropy SD (log) 0.81 (0.00-0.97) 0.61 (0.20-1.76) 0.361 1.10 (0.45-2.72) 0.835  1.01 (1.00-1.01) 0.164 

Local maximum range (log) 0.86 (0.16-0.98) 0.89 (0.43-1.09) 0.116 0.37 (0.19-0.67) 0.002*  1.00 (0.99-1.01) 0.467 

Local mean range (log) 0.89 (0.34-0.98) 0.69 (0.43-1.10) 0.122 0.44 (0.23-0.82) 0.012*  1.00 (0.99-1.01) 0.838 

Local median range (log) 0.88 (0.28-0.98) 0.73 (0.46-1.16) 0.189 0.49 (0.25-0.91) 0.027*  1.00 (0.99-1.01) 0.890 

Local minimum range (log) 0.87 (0.24-0.98) 0.61 (0.35-1.06) 0.082 0.64 (0.32-1.26) 0.197  1.00 (1.00-1.01) 0.230 

Local range SD (log) 0.74 (0.00-0.96) 0.76 (0.50-1.14) 0.185 0.39 (0.24-0.60) <0.001*  0.99 (0.98-1.00) 0.087 

Local maximum SD (log) 0.85 (0.15-0.98) 0.75 (0.48-1.17) 0.206 0.40 (0.21-0.75) 0.006*  1.00 (0.99-1.01) 0.579 

Local mean SD (log) 0.87 (0.25-0.98) 0.73 (0.46-1.13) 0.162 0.52 (0.26-1.01) 0.057  1.00 (0.99-1.01) 0.789 

Local median SD (log) 0.86 (0.16-0.98) 0.76 (0.48-1.17) 0.211 0.58 (0.29-1.10) 0.101  1.00 (0.99-1.01) 0.768 

Local minimum SD (log) 0.84 (0.09-0.97) 0.63 (0.35-1.10) 0.109 0.80 (0.40-1.60) 0.529  1.01 (1.00-1.01) 0.082 

Local SD SD (log) 0.77 (0.00-0.96) 0.82 (0.55-1.23) 0.334 0.39 (0.23-0.63) <0.001*  0.99 (0.99-1.00) 0.100 

Mean absolute deviation (log) 0.84 (0.05-0.97) 0.74 (0.48-1.12) 0.160 0.42 (0.23-0.75) 0.004*  1.00 (0.99-1.01) 0.618 

Median absolute deviation 
(log) 

0.74 (0.00-0.96) 0.78 (0.52-1.16) 0.228 0.44 (0.25-0.74) 0.002*  1.00 (0.99-1.01) 0.522 

Autocorrelation (log) 0.83 (0.03-0.97) 0.76 (0.54-1.06) 0.115 0.70 (0.37-1.28) 0.259  1.00 (1.00-1.01) 0.171 

Cluster prominence (log) 0.49 (0.00-0.91) 0.92 (0.83-1.03) 0.139 0.71 (0.59-0.85) <0.001*  1.00 (0.99-1.00) 0.637 

Cluster shade (log) 0.70 (0.00-0.95) 0.31 (0.09-1.10) 0.070 0.28 (0.07-0.77) 0.037*  1.00 (1.00-1.00) 0.660 

Cluster tendency (log) 0.74 (0.00-0.96) 0.86 (0.69-1.06) 0.153 0.47 (0.30-0.71) 0.001*  1.00 (0.99-1.00) 0.475 

ICM contrast (log) 0.73 (0.00-0.95) 0.83 (0.66-1.04) 0.106 0.57 (0.37-0.86) 0.009*  1.00 (0.99-1.00) 0.866 

Correlation (log) 0.59 (0.00-0.93) 1.26 (0.87-1.91) 0.256 0.11 (0.02-0.46) 0.003*  1.00 (1.00-1.00) 0.130 

Difference entropy (log) 0.87 (0.25-0.98) 0.43 (0.16-1.17) 0.098 0.15 (0.05-0.37) <0.001*  0.99 (0.98-1.00) 0.049* 

Dissimilarity (log) 0.81 (0.00-0.97) 0.69 (0.44-1.07) 0.096 0.37 (0.16-0.81) 0.015*  1.00 (0.99-1.01) 0.829 

ICM Energy (log) 0.95 (0.71-0.99) 1.28 (0.99-1.66) 0.060 25.9 (5.10-155) <0.001*  1.00 (1.00-1.01) 0.095 

ICM Entropy 0.93 (0.56-0.99) 0.85 (0.70-1.01) 0.070 0.59 (0.45-0.76) <0.001*  0.98 (0.97-0.99) 0.016* 

Homogeneity 1 0.90 (0.41-0.98) 7.68 (0.77-77.6) 0.081 9.37 (0.94-99.4) 0.059  1.00 (1.00-1.00) 0.878 

Homogeneity 2 0.91 (0.49-0.99) 5.96 (0.77-46.3) 0.086 6.95 (1.01-50.3) 0.051  1.00 (1.00-1.00) 0.883 

Informational measure 
correlation 1 (log)  

0.63 (0.00-0.94) 0.99 (0.23-4.87) 0.984 0.02 (0.00-0.20) 0.004*  1.00 (1.00-1.01) 0.015* 

Informational measure 
correlation 2 

0.79 (0.00-0.96) 0.66 (0.12-3.70) 0.631 3.12 (0.69-14.3) 0.138  1.01 (1.00-1.01) 0.149 

Inverse difference moment 
normalized (log) 

0.73 (0.00-0.95) 1.34 (0.45-7.03) 0.545 97.9 (1.86-2351) 0.065  0.82 (0.45-1.30) 0.441 

Inverse difference normalized 
(log) 

0.82 (0.00-0.97) 1.65 (0.72-5.27) 0.320 18.4 (1.44-415) 0.048*  0.95 (0.85-1.06) 0.402 

Inverse variance (log) 0.88 (0.29-0.98) 1.62 (0.88-3.08) 0.133 1.70 (0.23-13.9) 0.609  1.00 (1.00-1.00) 0.468 

Maximum probability (log) 0.91 (0.50-0.99) 1.34 (1.01-1.81) 0.046* 1.90 (1.26-2.94) 0.003*  1.00 (1.00-1.00) 0.243 

Sum average (log) 0.85 (0.11-0.97) 0.58 (0.29-1.12) 0.112 0.50 (0.14-1.66) 0.267  1.01 (1.00-1.02) 0.200 

Sum entropy 0.93 (0.58-0.99) 0.79 (0.58-1.07) 0.124 0.40 (0.26-0.61) <0.001*  0.98 (0.96-0.99) 0.004* 

Sum variance (log) 0.83 (0.01-0.97) 0.78 (0.57-1.05) 0.108 0.92 (0.51-1.64) 0.792  1.01 (1.00-1.01) 0.054 

ICM Variance (log) 0.74 (0.00-0.96) 0.86 (0.69-1.06) 0.153 0.47 (0.30-0.71) 0.001*  1.00 (0.99-1.00) 0.475 
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SUPPLEMENTAL TABLE 2 Test-retest intraclass correlation coefficients and univariable analysis for predicting pathologic 
complete response for higher-order 18F-FDG PET texture features and geometry features.
Group Feature           ICC Baseline Post-chemoradiation  Relative difference

OR (95% CI) p value OR (95% CI) p value  OR (95% CI) p value

Texture:  
Higher-order 
features  
(Local) 

Busyness (log) 0.88 (0.29-0.98) 1.33 (0.93-1.93) 0.117 2.12 (1.53-3.02) <0.001*  1.00 (1.00-1.01) 0.005* 

Coarseness 0.52 (0.00-0.92) 3.54 (1.05-12.6) 0.044* 0.21 (0.04-1.05) 0.069  1.00 (0.99-1.00) 0.051 

Complexity (log) 0.68 (0.00-0.95) 0.83 (0.67-1.01) 0.073 0.59 (0.42-0.81) 0.002*  1.00 (1.00-1.00) 0.961 

Contrast 0.63 (0.00-0.94) 9.68 (0.06-2159) 0.360 1.20 (0.05-13.1) 0.874  1.00 (1.00-1.01) 0.034* 

Texture strength (log) 0.74 (0.00-0.96) 0.79 (0.53-1.14) 0.221 0.44 (0.11-1.37) 0.199  1.00 (1.00-1.00) 0.572 

Texture: 
Higher-order 
features  
(Regional) 
  

Intensity non-uniformity 0.89 (0.34-0.98) 1.01 (0.99-1.03) 0.434 0.94 (0.89-0.98) 0.006*  1.00 (0.99-1.00) 0.101 

Run length non-uniformity 
(log) 

0.97 (0.81-0.99) 0.81 (0.57-1.14) 0.223 0.43 (0.29-0.61) <0.001*  0.99 (0.99-1.00) 0.136 

Run percentage (log) 0.89 (0.38-0.98) 0.47 (0.18-1.09) 0.087 1.70 (0.88-4.07) 0.181  1.03 (1.01-1.06) 0.021* 

High intensity run emphasis 
(log) 

0.84 (0.04-0.97) 0.77 (0.54-1.07) 0.121 0.75 (0.40-1.37) 0.356  1.01 (1.00-1.01) 0.127 

Low intensity run emphasis 
(log) 

0.84 (0.06-0.97) 1.34 (0.92-1.98) 0.135 1.22 (0.65-2.35) 0.544  1.00 (1.00-1.00) 0.976 

Long run emphasis 0.90 (0.42-0.98) 2.13 (0.92-5.22) 0.079 0.52 (0.23-1.11) 0.110  0.99 (0.98-1.00) 0.025* 

Short run emphasis (log) 0.90 (0.43-0.98) 0.33 (0.08-1.26) 0.102 1.63 (0.47-6.63) 0.462  1.03 (1.00-1.06) 0.067 

Long run high intensity 
emphasis (log) 

0.81 (0.00-0.97) 0.75 (0.50-1.11) 0.159 0.43 (0.19-0.92) 0.034*  1.00 (1.00-1.01) 0.455 

Short run high intensity 
emphasis (log) 

0.84 (0.07-0.97) 0.77 (0.56-1.06) 0.116 0.84 (0.48-1.43) 0.514  1.00 (1.00-1.01) 0.106 

Long run low intensity 
emphasis (log) 

0.86 (0.16-0.98) 1.31 (0.96-1.82) 0.095 0.97 (0.61-1.56) 0.900  1.00 (1.00-1.00) 0.792 

Short run low intensity 
emphasis (log) 

0.83 (0.00-0.97) 1.34 (0.90-2.03) 0.153 1.33 (0.67-2.74) 0.432  1.00 (1.00-1.00) 0.792 

Geometry 
(Size and 
shape) 

Maximum 3D diameter (log) 0.98 (0.85-1.00) 0.58 (0.24-1.39) 0.222 0.16 (0.06-0.39) <0.001*  0.99 (0.98-1.00) 0.127 

Compactness (log) 0.99 (0.97-1.00) 0.75 (0.37-1.53) 0.433 0.13 (0.06-0.29) <0.001*  0.98 (0.97-0.99) 0.009* 

Convex (log) 0.83 (0.00-0.97) 0.42 (0.15-1.17) 0.093 1.36 (0.35-8.23) 0.690  1.15 (1.00-1.33) 0.051 

Convex hull volume 2D (log) 0.99 (0.99-1.00) 0.86 (0.58-1.26) 0.436 0.34 (0.21-0.52) <0.001*  1.00 (0.99-1.00) 0.177 

Convex hull volume 3D (log) 0.99 (0.99-1.00) 0.85 (0.60-1.22) 0.379 0.43 (0.30-0.60) <0.001*  1.00 (0.99-1.00) 0.242 

Mean breadth (log) 0.93 (0.61-0.99) 0.59 (0.21-1.65) 0.318 0.07 (0.02-0.21) <0.001*  0.98 (0.97-0.99) 0.013* 

Orientation (log) 0.86 (0.18-0.98) 1.23 (0.83-1.91) 0.316 0.94 (0.73-1.23) 0.622  1.00 (0.99-1.00) 0.321 

Roundness (log) 0.84 (0.05-0.97) 0.50 (0.11-2.24) 0.365 0.33 (0.10-1.05) 0.062  1.00 (0.99-1.01) 0.386 

Spherical disproportion 0.69 (0.00-0.95) 0.62 (0.03-9.94) 0.743 5.27 (0.46-61.1) 0.181  1.02 (0.99-1.05) 0.194 

Sphericity (log) 0.67 (0.00-0.94) 1.98 (0.03-152) 0.750 0.07 (0.00-3.08) 0.171  0.98 (0.95-1.01) 0.234 

Surface area (log) 0.99 (0.97-1.00) 0.77 (0.42-1.39) 0.386 0.22 (0.11-0.41) <0.001*  0.99 (0.98-1.00) 0.070 

Surface area density 0.97 (0.80-0.99) 1.44 (0.64-3.26) 0.376 3.99 (2.28-7.40) <0.001*  1.01 (1.01-1.02) <0.001* 
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SUPPLEMENTAL TABLE 3 Logistic regression formulas of the four prediction models. 

Model 
no.       

Shrinkage 
factor 

Regression formula

1 0.713 log(p/1-p) = 0.647 + 0.713 ( -0.741*log(EUSlength) – 0.796*cTstage + 0.894*IndChTx 
– 1.20*EndoBiopsy) 

2 0.839 log(p/1-p) = 1.53 + 0.839 ( -0.700*log(EUSlength) – 0.943*cTstage + 0.877*IndChTx – 
1.14*EndoBiopsy – 1.22*SubjectivePET) 

3 0.798 log(p/1-p) = 2.34 + 0.798 ( -0.598*log(EUSlength) – 0.643*cTstage + 0.815*IndChTx – 
1.15*EndoBiopsy – 0.791*SubjectivePET – 0.565*log(pTLG))  

4 0.743 log(p/1-p) = 16.5 + 0.743 ( -0.777*log(EUSlength) – 0.618*cTstage + 1.03*IndChTx – 
1.19*EndoBiopsy – 0.663*SubjectivePET – 0.280*log(pTLG) – 
1.68*log(bClusterShade + 1500) – 0.029*dICMEntropy + 
0.063*dRunPercentage – 2.27*log(10*pRoundness)) 

p: Probability of pathologic complete response. EUSlength: EUS-based tumor length (in cm) at baseline. 
cTstage: Clinical T-stage (0=cT2, 1=cT3). IndChTx: Induction chemotherapy (no=0, yes=1). EndoBiopsy: 
Result of post-chemoradiation endoscopic biopsy (0=negative, 1=positive). SubjectivePET: Subjective 
assessment of response on post-chemoradiation 18F-FDG PET (0=complete response, 1=residual cancer). 
pTLG: Post-chemoradiation Total lesion glycolysis. bClusterShade: Baseline Cluster shade. dICMEntropy: 
Relative difference (in %) of ICM Entropy between baseline and post-chemoradiation 18F-FDG PET. 
dRunPercentage: Relative difference (in %) of Run percentage between baseline and post-chemoradiation 
18F-FDG PET. pRoundness: Post-chemoradiation Roundness.  
Note. Bold numbers represent shrinkage factors (provided by bootstrapping) used to adjust the estimated 
regression coefficients for over-fitting and miscalibration. 


