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Supplemental Data 

Data Sets 

The bio-distribution studies analyzed here were reported in reference (6) and are 

summarized below. Forty 11-week old female athymic mice were implanted subcutaneously with 

5×106 A2058 human melanoma cells (ATCC, Manassas, VA) in each of two abdominal sites and 

used for experiments 14 days later. For pharmacokinetic experiments, 36 athymic mice bearing 

A2058 cell-derived melanoma tumors were given 30 Ci 188Re-6D2 (total amount of 6D2 150 

g/100 L) and sacrificed at 5 min, 2 h, 4, and 24 h; or 120 Ci 188Re-6D2 (total amount of 6D2 

150 g/100 L) and sacrificed at 48 hr. Blood clearance samples (2 L) were collected at 5 min, 

1 h, 2, 4, 24 and 48 h from the dorsal tail vein and counted in a sodium iodide gamma well 

counter (Packard, Downers Grove, IL). The concentration of radioactivity in each organ was 

expressed as %ID/g. 

 Data Analysis 

We normalized the pharmacokinetics data by using the radioactivity concentrations at 5 

minutes after administration Ci(j, 5) as normalization factors. The variability of these 

concentrations was substantial, but not dramatic. For example, for blood the mean %ID/g at 5 

minutes was 67.8, the standard deviation was 16.7, and the range was 50.7–142.6. Based on prior 

experience, the shapes of the radioactivity concentration vs. time curves were similar regardless 

of the initial 188Re dose, supporting the assumption that first-order (not second-order) kinetics 

were dominating in pharmacokinetics of the radioactivity. 
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Mathematical Models 

To describe the data, we used seven mechanistically-plausible models for pharmacokinetics 

of radioactivity, which are summarized in Table 1 and were described briefly in the main text 

(Materials and Methods). We discuss these models in more detail here. 

A very simple model for pharmacokinetics of radioactivity from the selected organ/tissue 

involves a single first-order elimination rate. This mono-exponential (ME) model is described by 

the following equation, where PME(t) is the predicted normalized radioactivity at decay time t, 

and 1 is an adjustable parameter for biochemical decay:  

PME(t) = g(t) exp(–t/1)      Supplemental Eq. 1 

In some situations a portion of radioactivity can be “trapped” in an organ. This is 

represented by the following equation for the mono-exponential with added constant (MEC) 

formalism, w1 is the fraction of un-trapped radioactivity and 2 is the biochemical decay process: 

PMEC(t) = g(t) (w1 exp[–t/2] + 1 – w1)     Supplemental Eq. 2 

A more complex model which involves the sum of two first-order elimination rates is the 

following commonly used bi-exponential (BE) formalism, where 3 and 4 are fast and slow 

biochemical decay processes, and w2 is the fraction of biochemical decay which proceeds by the 

fast process: 

PBE(t) = g(t) [w2 exp(–t/3) +(1 – w2) exp(–t/4) ]   Supplemental Eq. 3 

A simple model which assumes an underlying CPD of pharmacokinetic rates (rather than the 

sum of two discrete rates) is the stretched exponential (SE) function (4, 5, 9). The SE model is 
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described by the following equation, where 5 is an adjustable parameter (with units of time) and 

1 is an exponent parameter: 

PSE(t) = g(t) exp[–(t/5)
1 ]     Supplemental Eq. 4 

We also used a modified version of the SE model, which we call the MSE model here (5). 

The MSE model is described by the following equation, where 6 is an adjustable parameter 

(with units of time) and 2 is an exponent parameter: 

PMSE(t) = g(t) exp[1 – (1 + t/6)
2]    Supplemental Eq. 5 

The underlying probability distribution of pharmacokinetic rates for the SE model is a 

single-peaked function which sometimes resembles the log-normal distribution. It can be 

calculated by inverse Laplace transform using the Bromwich integral (5). However, a log-normal 

distribution of first-order rates has no analytical solution (4), making its use for describing 

radiopharmaceutical pharmacokinetics less convenient. 

This rate distribution for the SE model (PDFSE(k)) can be expressed in terms of elementary 

functions for the special case where 1= ½ as follows, where k is the elimination rate (5): 

PDFSE(k) = ( 5/(21/2(k5)
3/2) )exp[–1/(4k5)]   Supplemental Eq. 6 

The probability distribution of elimination rates for the MSE model (PDFMSE(k)) is a simple 

modification of the one for the SE model (5): 

PDFMSE(k) = (6/(2 1/2 (k6)
3/2) ) exp[–1/(4k6) + 1 – k6]   Supplemental 

Eq. 7 
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Because of these convenient features of the special cases where the exponent parameters for 

the SE and MSE models equal ½, we produced simplified 1-parameter versions of these models 

(called SSE and SMSE) as follows, where 7 and 8 are adjustable parameters: 

PSSE(t) = g(t) exp[–(t/7)
1/2],         

PSMSE(t) = g(t) exp[1 – (1 + t/8)
1/2]      

 Supplemental Eq. 8 

Model Fitting Procedure 

The mathematical models were fitted to the normalized data Fi(j,t) for each organ/tissue 

separately, by maximizing the log likelihood, using optimization routines in Maple 17® 

software. The probability of finding the global maximum (rather than local maxima) was 

enhanced by using 100 random initial conditions for the model parameters, and by checking the 

results manually (for example, for 2-parameter models the dependence of the log likelihood 

function on parameter values could be plotted in 3 dimensions and visualized directly). All 

parameters were restricted to positive values to maintain mechanistic plausibility.  

We assumed a Gaussian error distribution with constant variance for all data points. This 

assumption was reasonable because the instrument-related errors introduced during measurement 

of the initial dose of radioactive material administered to each mouse, which were likely to be 

the main contributors to the errors in Fi(j,t), were not estimated explicitly and were likely to be 

the same for all data points. Poisson-distributed errors introduced during counting of radioactive 

decays were likely to be much smaller (16). The log likelihood function (LLM,i) for the M-th 

model and for the i-th organ/tissue, under assumption of constant variance, is described by the 
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following equation, where M indicates one of the seven models and N(i) is the total number of 

data points for the i-th organ/tissue (106 for blood, 23 for bone marrow, and 24 for kidneys, 

liver, and lungs): 

LLM,i= – ½N(i) × (ln[∑j∑t [(PM,i(t) – Fi(j,t))
2]/N(i)] +ln(2) +1 )  Supplemental Eq. 9 

The constant term ln(2)+1 was included for completeness, but had no effect on the comparison 

of model performances and on parameter estimation.  

The likelihood function in Supplemental Eq. 9 is equivalent to nonlinear least squares with a 

single parameter set fitted across subjects (mice). Notably, the stretched exponential formalisms 

(SE, MSE, SSE, SMSE) are closed form functions in which fitted parameters enter nonlinearly, 

and the probabilistic component (i.e. the CPD shape) refers to the underlying derivation, not to 

the data fitting procedure per se. 

Absolute goodness of fit (GOF) for the analyzed models under assumption of constant 

variance was assessed by exploratory data fitting using three methods: (1) visual inspection of 

model fits and the data; (2) calculation of the coefficient of determination, R2; (3) linear 

regression of model predictions PM,i(t) vs. data points Fi(j,t). Implementation of these approaches 

showed that one or more of the tested models performed reasonably well when fitted to data 

from each organ/tissue: the model prediction curves visually passed through most of the data 

clusters, R2 values were generally > 0.7 (and in some cases > 0.98), and the 95% confidence 

intervals (CIs) for the regression of model predictions vs. data included 0 for the intercept and 1 

for the slope. 

In contrast, analogous exploratory calculations showed that assumption of Gaussian errors 

with magnitudes proportional to the values of Fi(j,t), which resulted in replacement of the term 
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[PM,i(t) – Fi(j,t)]
2 in Supplemental Eq. 9 by the term [PM,i(t) – Fi(j,t)]

2/Fi(j,t)
2, produced much 

worse GOF for each of the tested models. This occurred because outlier data points with small 

values of Fi(j,t) strongly affected the fit, causing model predictions to underestimate the majority 

of other data points. Consequently, the assumption of constant variance (implemented in 

Supplemental Eq. 9) was used for the subsequent data analysis presented below. 

Estimation of Model Parameter Uncertainties 

Uncertainties (95% CIs) for best-fit model parameter values were estimated by profile 

likelihood (17) as follows: 10,000 Monte-Carlo-generated parameter values in the vicinity of the 

best-fit values were used to estimate the critical contour of the log likelihood function, which is 

based on the asymptotic 2 behavior of the log likelihood distribution. 

Information Theoretic Model Selection 

As mentioned in the main text, sample size-corrected Akaike information criterion (AICc) 

was used to rank models by relative GOF. The equation for AICc for the M-th model and for the 

i-th organ/tissue (AICcM,i) is given below, where KM is the number of model parameters: 

AICcM,i = –2 LLM,i+ 2 KM + 2 KM (KM + 1)/(N(i) – KM – 1)   Supplemental 

Eq. 10 

Here, no additional parameter was used to represent the errors because they were not estimated 

from the data, but considered to be constant for all data points. Consequently, the numbers of 

adjustable parameters (KM) for each of the seven models were: KME = 1 (1), KMEC = 2 (w1, 2), 

KBE = 3 (w2, 3, 4), KSE = 2 (5, 1), KMSE = 2 (6, 2), KSSE = 1 (7), KSMSE = 1 (8) (Table 1).  
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One of the most convenient features of using AICc is that it allows the evidence for multiple 

structurally distinct models to be compared simultaneously, without the need for models to be 

“nested” or to belong to the same class. The relative likelihood of the M-th model and for the i-th 

organ/tissue, called the evidence ratio (ERM,i), can be expressed as: 

ERM,i = exp[–½AICcM,i], where AICcM,i = AICcM,i – AICcmin,i   Supplemental 

Eq. 11 

Here AICcmin,i is the lowest AICc value generated by the set of models being compared. If 

AICcM,i > 6, then the evidence ratio ERM,i < 0.05, suggesting that the M-th model has poor 

support from the data for the i-th organ/tissue, relatively to the best-ranking model in the set of 

models being compared.  

The Akaike weight, WM,i, is another useful quantity – it represents the probability that the 

M-th model would be considered the best-ranking model for the i-th organ/tissue upon repeated 

sampling of the data. It is a normalized evidence ratio, i.e. the evidence ratio for the tested model 

divided by the sum of the evidence ratios for all the models being compared: 

WM,i= ERM,i/∑MERM,i     Supplemental Eq. 12 

Multi-model Inference for the Time Integral of Radioactivity 

We used multi-model inference to produce a model-averaged time integral of radioactivity 

as follows. First, we calculated the normalized time integral, NTIM,i, for the i-th organ/tissue 

using the following equation, where PM,i(t) are the best-fit predictions for the M-th model as 

function of decay time t, and PBE,i(t) are the best-fit predictions for the BE model: 

NTIM,i = , ,      Supplemental Eq. 13 



THE JOURNAL OF NUCLEAR MEDICINE • Vol. 56 • No. 10 • October 2015  Shuryak and Dadachova et al. 

Next, we calculated the Akaike weighted normalized time integral, WNTIM,i, using the 

expression below, where WM,i is the Akaike weight of the M-th model:    

WNTIM,i = WM,iNTIM,i      Supplemental Eq. 14 

Finally, we calculated the model-averaged normalized time integral, MMTIi: 

MNTIi = ∑MWNTIM,i      Supplemental Eq. 15 

Here the normalization of the time integrals for all models by the value predicted by the BE 

model was used for convenience, to emphasize potential differences between model predictions, 

rather than the absolute values of the time integrals, which have no importance within the scope 

of this paper. Consequently, MNTIi is the model-averaged time integral of radioactivity, relative 

to the prediction of the BE model. If MNTIi is smaller/greater than 1, then accounting for the 

evidence supporting alternative formalisms other than the BE model results in reduction/inflation 

of the estimated time integral, i.e. using the BE model alone would overestimate/underestimate 

the time integral.  


