Preparation of QD-RGD-BBN

QD-RGD-BBN, purchased from APeptide Co., Ltd (Shanghai, China), was synthesized from conjugation of peptide heterodimer BocNH-PEG 3 -(SuO)-beta-Glu-RGD-BBN with QD-705 and deprotection of Boc (t-butyloxycarbonyl-) group with trifluoroacetic acid (TFA) as shown in Fig 1B. The peptide heterodimer $\mathrm{BocNH}^{-\mathrm{PEG}_{3}-(\mathrm{SuO}) \text {-beta-Glu-BBN-RGD-Resin was }}$ synthesized stepwise by solid-phase peptide synthesis strategy as described in Supplemental Fig. 1. In brief, loading of Fmoc-Asp(Oallyl)-resin, synthesis of the cyclo(Arg-Gly-Asp-D-Tyr-Lys) (RGD) peptide follows standard peptide synthesis protocols. The β-carboxylate was activated and coupled with cyclic RGD peptide via the lysine side chain ε-amine group. After removing the -Dde protected group from β-Glu, the heterodimer peptide Fmoc-beta-Glu-BBN(7-14)-beta-Glu*-cyclo(Arg-Gly-Asp-D-Tyr-Lys)-Resin
(Fmoc-beta-Glu-BBN-RGD-Resin) was obtained, which indicates the amino acid that links the RGD and BBN peptides and has a NH_{2} group for Fmoc-Glu-OH conjugation, RGD was coupled to the glutamate β-carboxylate group and BBN was coupled to the glutamate another β-carboxylate group. BocNH-PEG ${ }_{3}$-(SuO)-beta-Glu-RGD-BBN was prepared from removing -Fmoc group of Fmoc-beta-Glu-BBN-RGD-Resin,
 detaching/deprotecting the resin. The final heterodimer product QD-RGD-BBN was synthesized by conjugation of BocNH-PEG 3 -SuO-beta-Glu-RGD-BBN with QD-705 under mild condition and Boc group deprotection with TFA, and then purified by
preparative HPLC and lyophilized to afford QD-RGD-BBN as a white powder. ESI-MS: $(\mathrm{M}+3 \mathrm{H})^{3+}=700.8 ;$ RP-HPLC: $t_{\mathrm{R}}=12.6 \mathrm{~min}\left(10 \%-80 \% \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} ; 20\right.$ min).

BocNH-PEG3-SuO-beta-Glu-RGD-BBN

SUPPLEMENTAL FIGURE 1. The solid-phase synthetic scheme of the peptide heterodimer BocNH-PEG3-(SuO)-beta-Glu-RGD-BBN.

Preparation of ${ }^{18} F-F P-Q D-R G D-B B N$
0.3 mg of QD-RGD-BBN in 0.2 mL of DMSO containing $20 \mu \mathrm{~L}$ of diisopropylethylamine (DIPEA) was added to the reaction vessel with ${ }^{18}$ F-NFP and heated at $40^{\circ} \mathrm{C}$ for 5 min . At the end of the reaction, the reaction mixture was quenched by adding of 5% acetic acid ($600 \mu \mathrm{~L}$) and diluted with water $(10 \mathrm{~mL})$, and the solution was passed through a Sep-Pak plus C18 cartridge. ${ }^{18}$ F-FP-QD-RGD-BBN was trapped on the C18 cartridge, and the cartridge was washed with 10 mL of water. Finally, ${ }^{18}$ F-FP-QD-RGD-BBN was eluted with 1 mL of ethanol into vial with 10 mL saline.

In vivo biodistribution

The biodistribution study for ${ }^{18}$ F-FP-QD-RGD-BBN was performed in Kunming mice (body weight range $18-25 \mathrm{~g}$). Mice were injected with $0.74 \mathrm{MBq}(20 \mu \mathrm{Ci})$ of ${ }^{18}$ F-FP-QD-RGD-BBN through the tail vein. Prescribed increments of time at 5, 30, 60 , and 120 min postinjection were allowed before procurement of organs and tissues. Blood was obtained through mouse eyeball, and the other tissue samples of interest, including heart, brain, lung, liver, spleen, pancreas, kidneys, intestine, muscle, stomach, and bone, were rapidly dissected and weighed. ${ }^{18} \mathrm{~F}$ radioactivity was counted with an auto- γ counter. All measurements were background-subtracted and decay-corrected to the time of injection. The results were calculated as percentage injected dose per gram tissue or organ ($\%$ ID $/ \mathrm{g}$) $(\mathrm{n}=4)$.

SUPPLEMENTAL FIGURE 2. Cytotoxicity of QD-RGD-BBN and QD705 at various concentrations.

SUPPLEMENTAL FIGURE 3. In vivo NIRF imaging of PC-3 tumor-bearing mice at $1,5,7$, and 24 h after injection of 200 pmol QD705.

SUPPLEMENTAL FIGURE 4. QD-RGD-BBN (QD conjugated probe) and QD705
fluorescence images of frozen tissue slices ($8 \mu \mathrm{~m}$ thickness). All images were acquired under the same experimental condition. The fluorescence images of all the tissues were displayed at the same scale. Magnification, $200 \times$. Histological images of QD705 and QD conjugated probe in tissues. Excitation: 420 nm, Emission: 705/20 nm.

中山大赤附属苐一欧院医学伦理委员反批文件				
伦新［2013］A－173 号				日
审没项目	合成及其作用机瑇开党			
负责科室		匟帚什 項目负责人	／W	
出庶委员	住别	单 位	专业	釟名
爯楽	\％		W\％	
Qu． 2	${ }^{*}$			
粎6	5		8 \％	
琼年	5			
5 F	4		¢0\％\％	
14 st	n		n ${ }^{\text {\％}}$	者戚
	4			Err
宔 7	＊		matony	人3
桃碞	\＆		15%	
－ 月，$^{\text {d }}$	5		1为\％	
肚年	这		$10^{\text {\％}}$	$\frac{y}{r^{2}}$
ザさ\％	男		W\％	\％ef
40\％	\％		89\％	
6n\％	\％		＊＊	

已提 交审 阅的 材料	
投票结果	
医学伦理委员会意见： 	
 	87321871，020－87312200 捲 8015 ff Cl 020－57313122

SUPPLEMENTAL FIGURE 5．The original approval documents for animal experimental studies．Approval No．［2013］A－173（top）and No．［2012］001（bottom） were issued by Institutional Animal Care and Utilization Committee（IACUU）of the First Affiliated Hospital，Sun Yat－Sen University．

