

SUPPLEMENTAL FIGURE 1. Histogram showing the large variation in the timing of PET imaging protocols for $[1^{-11}C]$ acetate in clinical oncology. The frame reference time is the midpoint of the time frame after $[1^{-11}C]$ acetate injection that was used for analysis. In other words if the scan was acquired from 10 to 20 min after $[1^{-11}C]$ acetate injection then the frame reference time was 15 min p.i. The data were taken from 28 separate studies (no data was available in 2 studies), details are given in Supplemental Table 1.

SUPPLEMENTAL FIGURE 2. ¹³C NMR measurements of $[1^{-13}C]$ acetate in aqueous tumor extracts of prostate-tumor bearing mice (bars represent mean + S.E.M (n = 1 – 2 mice at each time point)).

SUPPLEMENTAL FIGURE 3. Dynamic measurements of [1-¹¹C]acetate uptake in a K-ras^{G12D}; p53^{null} lung tumor-bearing mouse. (A) Tissue-time activity curves following [1-¹¹C]acetate injection from a single animal that was representative of others in the group (Figure 5 main article), *inset* shows the first 5 minutes. (B) Tumor-to-tissue activity ratios corresponding to the data shown in A.

SUPPLEMENTAL METHODS

¹³C NMR spectroscopy in C4-2B xenografts

The aqueous fractions of tumor extracts were reconstituted in ${}^{2}\text{H}_{2}\text{O}$ containing 200 mmol/l phosphate buffer, pH 7, and 10 mmol/l EDTA. Extracts were prepared from tumors at 30 (n = 2), 60 (n = 1) and 90 min (n = 1) following administration of $[1^{-13}\text{C}]$ acetate. Proton decoupled ${}^{13}\text{C}$ -NMR spectra were acquired using a Bruker Avance II+ 500 MHz spectrometer (Bruker Biospin, Karlsruhe, Germany), with a 30° flip angle pulse, Waltz-16 decoupling, a relaxation delay of 2 s and are the sum of 4096 transients. The integral of the $[1^{-13}\text{C}]$ acetate resonance was normalized with respect to the integrals from the EDTA resonances and corrected for tumor weight.

¹³C metabolite analysis by GC-MS in C4-2B xenografts

One μ l of each derivatized sample was injected using an MP Multipurpose sampler MPS2-Twister (Gerstel, Germany) into an Agilent 7890A gas chromatograph (Agilent Technologies, US), separated on a Phase RXI-5Sil MS, 30m x 0.25mm (Restek, UK) GC column using helium (N6.0, Boc UK) as a carrier gas at constant flow rate of 1 ml/min.

GC Method for non-aqueous fraction samples

The injector temperature was heated to 270 °C. GC oven temperature was set at 100 °C for the first 5 minutes and then programmed to ramp up by 15 °C/min to 200 °C, 5 °C/min to 250 °C and finally 15 °C/min to 300 °C. Transfer line temperature was kept at 230 °C. Data collection rate was set to 20 Hz. Acquisition delay was 300 seconds.

GC Method for aqueous fraction samples

The injector temperature was held at 230 °C. GC oven temperature was set at 80 °C for the first 2 minutes and then programmed to ramp up by 15 °C/min to 300 °C, and then maintained at 300 °C for 6 minutes. Transfer line temperature was kept at 250 °C. Data collection rate was set to 20 Hz. Acquisition delay was 300 seconds.

MS method

A Pegasus High-Throughput (HT) Time of Flight (TOF) Mass Spectrometer (Leco, UK) was used to detect mass spectra of analytes. Eluted analytes from the GC column were introduced into electron impact ion source and ionized at 70 eV. Masses were scanned in the range of 85 to 500 Da. Acquisition rate was set at 20 spectra per second. Detector voltage was set at 1500 V and ion source temperature to 230 °C.

SUPPLEMENTAL TABLE

Supplemental Table 1. Published clinical [1-¹¹C]acetate PET studies showing the amount of radioactivity injected, the start time and duration of PET image acquisition following [1-¹¹C]acetate injection. Conditions of the PET scan are summarized, where available, in the following format: Time frame used for analysis of summed PET image in minutes; @ time frame acquisition interval in minutes after tracer injection ('p.i.); end of acquisition in minutes after injection in brackets; and mean injected activity in MBq. Abbreviations: T/N – tumor-to-normal tissue ratio; TAC – Time-Activity Curve; FOV – Field-of-View; BAC – bronchioalveolar carcinoma; WDA –well differentiated lung adenocarcinoma; HCC – hepatocellular carcinoma; RCC – renal cell carcinoma; and BPH – benign prostate hyperplasia.

Publication	Cancer	Conditions	Result	Comment
(1)	Prostate	10'@10-20'p.i.	SUV 3.3-10 all lesions	
		740 MBq	detected	
(2)	Prostate	10'@47' p.i.	Radiotherapy patients	Old scanner (partial
		520 MBq	Mean SUVmax 2.9, mean	volume effects),
			T/N 2.4,	count rate in
			Surgery Patients: T/N 1.9.	saturation, no CT
			PSA <0.8 ng/ml	fusion).
(3)	Prostate	2'@10-12'p.i.	Acetate	Possibly imaging
		(max 30')	uptake in tumors was	blood flow as the
		1.5 GBq	similar to that in benign	time frame 10 –
		Dynamic	prostatic hyperplastic	12'p.i. was used for
		acquisition 0 –	nodules. Sensitivity and	analysis and the
		6'p.i.,	specificity of 61.6% and	scan stopped at 30'.
		alternating bed	80.0%, only Logan plot was	
		positions	linear.	
	D	thereafter		NT . 1 111
(4)	Prostate	5 @5 p.1. (5 per	Failed to detected small	Not clear which was
		bed position)	nodule involvement	the first bed
		950 MBq		position and when
				the prostate was in
(5)	Droctoto	20' @ 0 20' n i	2 comportment kinetie	Descibly imaging
(3)	Prostate	20 @ 0-20 p.1.	s-compartment kinetic	Possibly imaging
		J.J MIDY/Kg	to late SUV comparison	blood now.
		acquisition	provided significant	
		acquisition	difference between primary	
			and recurrent cancer but not	
			BPH.	
(6)	Prostate	10 MBq/kg		Reference time
		started at		frame and scan
		injection		duration was not
				reported.

Publication	Cancer	Conditions	Result	Comment
(7)	Prostate	10'@2-12' (max 47') 524 MBq		Late time frames were acquired over regions other than prostate
(8)	Prostate	4'@ 10-14' p.i. (max 34' p.i.) 642 MBq	Acetate uptake was visualized in all patients. No correlation between SUVmax and Gleason score.	Late time frames were acquired over regions other than prostate.
(9)	Prostate	4'@16'- 20'p.i. (max 20' p.i.) 555 MBq dynamic acquisition 10x30" 15x60" time frames	Little difference between normal, BPH and cancer. No difference between early (6-10'p.i.) and late (16-20' p.i.) images.	Late images may not have been late enough.
(10)	Recurrent Prostate	First bed position 5'@5' p.i. 810 MBq		Number of bed positions was not indicated, nor was it clear which was the first bed position
(11)	Recurrent prostate	@10' p.i. 800 MBq	Promising results for recurrence detection with low PSA values	Scan duration is not reported. Not clear which was the first bed position and when the prostate was in the FOV
(12)	Bone metastatic prostate	20' @ 5 – 25' p.i. 11 MBq/kg	Acetate PET generally detected more metastases with a higher T/N ratio than FDG. Acetate could be used for tumor response assessment. T/N ratio was most useful.	Late time frames were used for qualitative metastases detection.
(13)	Lung	4.6 MBq/kg @ 10' p.i. up to 24'	Acetate sensitivity 71% (57% FDG), with the same specificity. For WDA sensitivity of acetate and FDG were 67% and 37% respectively	Could replace FDG for imaging of NSCLC

Publication	Cancer	Conditions	Result	Comment
(14)	Lung	3'@10'-34' p.i. (8 time frames) 4.6 MBq/kg	Image BAC and WDA with higher sensitivity than FDG, cannot evaluate aggressiveness as well as FDG. Acetate provides complementary to FDG information.	Not clear which was the first bed position and when the lung was in the FOV
(15)	Lung	10'@10-20' p.i. (max 26'p.i.) 555 MBq Dynamic acquisition	Acetate is inferior to FDG. SUVs ranging from 0.14 to 5.50.	Possibly imaging blood flow. Acetate provided complementary information to FDG
(16)	НСС	10'@10- 20'p.i. (max 30'p.i.) 555 MBq Two bed positions used.	SUV [SUVmax] 7.32 , T/N 1.96	Not clear which time frame provided data for SUV calculations. Acetate provided complementary information to FDG
(17)	НСС	3'@20'-38' p.i. (max. 41' p.i.) 370- 555 MBq	Acetate PET increased sensitivity of primary tumor detection compared to FDG PET, but not of metastases.	Not clear when the liver or extrahepatic metastases were in the FOV.
(18)	НСС	5'@15'-30' p.i. (max 45' p.i.) 850 MBq	87% sensitivity was reported. Acetate PET might play a role in HCC diagnostic workup.	Not clear when the prostate was in the FOV
(19)	Renal (clear cell and papillary carcinoma)	30'@ 20-50' p.i. 370 MBq 9x10" 7x30" 5x60" 2x300"	70% positive findings. Marked uptake in renal cell carcinoma that was dependent on tumor size. Acetate is a possible PET tracer for detection of renal cell carcinoma. (T/N 1.5 and 3)	At least 15' p.i. is recommended.
(20)	Renal (clear cell carcinoma and papillary)	25°@5- 30'p.i. 840 MBq Dynamic acquisition: 12×10", 2×30", 2×60", 2×150", 4×300"	The majority of RCCs accumulated acetate to a lesser or similar extent compared with normal kidney parenchyma. T/N 2 and 4. Acetate PET cannot be recommended for the characterization of a renal mass.	Images analyzed on summed 5-30' time frames. Possibly wrong conclusions from the shape of TAC.

Publication	Cancer	Conditions	Result	Comment
(21)	Renal	Dynamic	acetate promising	Difference in tracer
		acquisition	with kinetic	kinetics after 10'p.i.
		10x10"	modeling	was reported for renal
		10x20"		parenchyma and RCC
		2x2.5'		
		4x5'		
		(max 30' p.i.)		
		370-		
		740 MBq		
(22)	Renal	5'@10' p.i.	Both tumor types	Case report. Not clear
	oncocytoma	1460 MBq	detected.	when prostate was in
	and recurrent			the FOV nor what was
	prostate	-		the scan duration.
(23)	Renal	unknown	Acetate PET	TK inhibitor treatment
			positive while FDG	response case report, no
			PET negative.	imaging details
			Acetate PEI	reported.
			predictive of	
			response at 2	
(24)	Bladdor	3.5'	Detection of	Not clear when the
(24)	Diauuei	0.5	residual bladder	tumor was in FOV for
		25° n i	cancer	SUV calculations
		$(\max 60' n i)$	sensitivity 80%	Intermediate phase
		760 MBa	specificity 50%	thought to be best for
		, 00 mbq	Identification of	imaging 15-20min p.i.
			metastatic nodal	but not a clear rationale
			regions	given.
			sensitivity 100%	
			specificity 87%.	
(25)	Head and	5'@17-22'	Acetate detected	Thresholding with
	Neck:	(max 32'p.i.)	more lesions than	background correction
	squamous cell	10 MBq/kg	FDG.	was used to calculate
	carcinoma	Dynamic	Acetate provided	SUVs.
		acquisition.	larger tumor	
ļ			volumes.	
(26)	Glioma	6 MBq/kg	Acetate high	Compared to
		@ 5 – 15' p.i.	sensitivity - 90%,	methionine which did
			uptake proportional	not distinguish grade.
			to grade.	
(27)	Glioma	740 MBq	Acetate	FDG was not useful for
		@ 10 -	differentiated low	grading
		20°p.i.	and high grade	
		740.255	lesions	
(28)	Astrocytoma	740 MBq	Acetate useful in	
		@3 p.1. for	detection but not	
		201	grading	

Publication	Cancer	Conditions	Result	Comment
(29)	Meningioma	740 MBq @10' p.i. for 10'	Acetate good for detection and monitoring therapy but not grading. T/N 3.46 uptake was not proportional to grade	Spatial dissociation of acetate and FDG.
(30)	Multiple myeloma	555 MBq @20' p.i.	Acetate and FDG uptake in the same lesions	

REFERENCES

1. Oyama N, Akino H, Kanamaru H, et al. ¹¹C-acetate PET imaging of prostate cancer. *J Nucl Med.* 2002;43:181-186.

2. Albrecht S, Buchegger F, Soloviev D, et al. ¹¹C-acetate PET in the early evaluation of prostate cancer recurrence. *Eur J Nucl Med Mol Imaging*. 2007;34:185-196.

3. Mena E, Turkbey B, Mani H, et al. ¹¹C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. *J Nucl Med.* 2012;53:538-545.

4. Kotzerke J, Volkmer BG, Glatting G, et al. Intraindividual comparison of [¹¹C]acetate and [¹¹C]choline PET for detection of metastases of prostate cancer. *Nuklearmedizin*. 2003;42:25-30.

5. Schiepers C, Hoh CK, Nuyts J, et al. 1^{-11} C-acetate kinetics of prostate cancer. *J Nucl Med.* 2008;49:206-215.

6. Fricke E, Machtens S, Hofmann M, et al. Positron emission tomography with ¹¹C-acetate and ¹⁸F-FDG in prostate cancer patients. *Eur J Nucl Med Mol Imaging*. 2003;30:607-611.

7. Vees H, Buchegger F, Albrecht S, et al. ¹⁸F-choline and/or ¹¹C-acetate positron emission tomography: detection of residual or progressive subclinical disease at very low prostate-specific antigen values (< 1 ng/mL) after radical prostatectomy. *BJU Int.* 2007;99:1415-1420.

8. Jambor I, Borra R, Kemppainen J, et al. Functional imaging of localized prostate cancer aggressiveness using ¹¹C-acetate PET/CT and ¹H-MR spectroscopy. *J Nucl Med.* 2010;51:1676-1683.

9. Kato T, Tsukamoto E, Kuge Y, et al. Accumulation of [¹¹C] acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. *Eur J Nucl Med Mol Imaging*. 2002;29:1492-1495.

10. Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. *Eur J Nucl Med Mol Imaging*. 2002;29:1380-1384.

11. Sandblom G, Sorensen J, Lundin N, Haggman M, Malmstrom PU. Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. *Urology*. 2006;67:996-1000.

12. Yu EY, Muzi M, Hackenbracht JA, et al. C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. *Clin Nucl Med.* 2011;36:192-198.

13. Nomori H, Shibata H, Uno K, et al. ¹¹C-acetate can be used in place of ¹⁸F-fluorodeoxyglucose for positron emission tomography imaging of non-small cell lung cancer

with higher sensitivity for well-differentiated adenocarcinoma. *J Thorac Oncol.* 2008;3:1427-1432.

14. Shibata H, Nomori H, Uno K, et al. ¹¹C-acetate for positron emission tomography imaging of clinical stage IA lung adenocarcinoma: comparison with ¹⁸F-fluorodeoxyglucose for imaging and evaluation of tumor aggressiveness. *Ann Nucl Med.* 2009;23:609-616.

15. Higashi K, Ueda Y, Matsunari I, et al. ¹¹C-acetate PET imaging of lung cancer: comparison with ¹⁸F-FDG PET and ^{99m}Tc-MIBI SPET. *Eur J Nucl Med Mol Imaging*. 2004;31:13-21.

16. Ho CL, Yu SC, Yeung DW. ¹¹C-acetate PET imaging in hepatocellular carcinoma and other liver masses. *J Nucl Med.* 2003;44:213-221.

17. Park JW, Kim JH, Kim SK, et al. A prospective evaluation of ¹⁸F-FDG and ¹¹C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. *J Nucl Med.* 2008;49:1912-1921.

18. Li S, Beheshti M, Peck-Radosavljevic M, et al. Comparison of ¹¹C-acetate positron emission tomography and ⁶⁷Gallium citrate scintigraphy in patients with hepatocellular carcinoma. *Liver Int.* 2006;26:920-927.

19. Oyama N, Okazawa H, Kusukawa N, et al. ¹¹C-acetate PET imaging for renal cell carcinoma. *Eur J Nucl Med Mol Imaging*. 2009;36:422-427.

20. Kotzerke J, Linne C, Meinhardt M, et al. $[1-^{11}C]$ acetate uptake is not increased in renal cell carcinoma. *Eur J Nucl Med Mol Imaging*. 2007;34:884-888.

21. Shreve P, Chiao PC, Humes HD, Schwaiger M, Gross MD. Carbon-11-acetate PET imaging in renal disease. *J Nucl Med.* 1995;36:1595-1601.

22. Shriki J, Murthy V, Brown J. Renal oncocytoma on 1-¹¹C acetate positron emission tomography: case report and literature review. *Mol Imaging Biol.* 2006;8:208-211.

23. Maleddu A, Pantaleo MA, Castellucci P, et al. ¹¹C-acetate PET for early prediction of sunitinib response in metastatic renal cell carcinoma. *Tumori*. 2009;95:382-384.

24. Schoder H, Ong SC, Reuter VE, et al. Initial results with ¹¹C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. *Mol Imaging Biol.* 2012;14:245-251.

25. Sun A, Sorensen J, Karlsson M, et al. 1-[¹¹C]-acetate PET imaging in head and neck cancer - a comparison with ¹⁸F-FDG-PET: implications for staging and radiotherapy planning. *Eur J Nucl Med Mol Imaging*. 2007;34:651-657.

26. Yamamoto Y, Nishiyama Y, Kimura N, et al. ¹¹C-acetate PET in the evaluation of brain glioma: comparison with ¹¹C-methionine and ¹⁸F-FDG-PET. *Mol Imaging Biol.* 2008;10:281-287.

27. Tsuchida T, Takeuchi H, Okazawa H, Tsujikawa T, Fujibayashi Y. Grading of brain glioma with 1-¹¹C-acetate PET: comparison with ¹⁸F-FDG PET. *Nucl Med Biol.* 2008;35:171-176.

28. Liu RS, Chang CP, Chu LS, et al. PET imaging of brain astrocytoma with 1-¹¹C-acetate. *Eur J Nucl Med Mol Imaging*. 2006;33:420-427.

29. Liu RS, Chang CP, Guo WY, et al. 1-¹¹C-acetate versus ¹⁸F-FDG PET in detection of meningioma and monitoring the effect of gamma-knife radiosurgery. *J Nucl Med.* 2010;51:883-891.

30. Lee SM, Kim TS, Lee JW, et al. Incidental finding of an ¹¹C-acetate PET-positive multiple myeloma. *Ann Nucl Med.* 2010;24:41-44.