Supplemental Data

1. γ-Ray Spectrometry of Irradiated ⁴⁴Ca-Targets

Purpose. To produce ⁴⁴Sc via the ⁴⁴Ca(p,n)⁴⁴Sc-nuclear reaction at a cyclotron, targets that contain either natural calcium (^{nat}Ca, mixture of Ca-isotopes) or enriched calcium (⁴⁴Ca) can be irradiated (*1-4*). In order to investigate the difference among these possibilities we analyzed the composition of radioactive isotopes upon irradiation of targets composed of either ^{nat}CaCO₃ or ⁴⁴CaCO₃.

Experimental. For preparation of the targets, ^{nat}CaCO₃ (200 mg, purum p.a., Fluka AG) or ⁴⁴CaCO₃ (5-10 mg, 97.0%, Trace Sciences International) combined with graphite powder (150 mg, 99.9999%, Alfa Aesar) was pressed by a target press device and encapsulated in aluminum. Targets were irradiated for 30-40 min at the cyclotron facility at PSI using a proton energy of 17.6 ± 1.8 MeV and a beam current of 50 µA. Next, the irradiated CaCO₃-targets were dissolved in 3 M HCl. Five hours (and 48 h) after the end of the irradiation (end of beam) aliquots of 1 mL were taken and analyzed by γ -ray spectrometry using an N-type high-purity germanium (HPGe) coaxial detector (EURISYS MESURES) and the Ortec InterWinner 5.0 software to determine the amount of ⁴⁴Sc and co-produced radioisotopes.

Results and Conclusion of the γ-Spectrometry. Because of the natural abundances of calcium isotopes in ^{nat}Ca (⁴⁰Ca: 96.94%; ⁴²Ca: 0.65%; ⁴³Ca: 0.14%, ⁴⁴Ca: 2.09%; ⁴⁶Ca: 0.004%; and ⁴⁸Ca: 0.19%) irradiation of ^{nat}CaCO₃-targets resulted in the production of ⁴⁴Sc along with other Sc-radioisotopes (⁴³Sc, 4%, t_{1/2} = 3.89 h; ^{44m}Sc, 0.7%, t_{1/2} = 58.6 h; ⁴⁷Sc, 0.7%, t_{1/2} = 80.4 h; and ⁴⁸Sc, 0.7%, t_{1/2} = 43.7 h) as shown on the γ-spectrum obtained from aliquots of dissolved ^{nat}CaCO₃-target material upon irradiation (Supplemental Fig. 1A). The γ-spectrum of the irradiated enriched ⁴⁴CaCO₃-target material showed high radionuclide purity with less than 1% of the co-produced longer-lived ^{44m}Sc (γ-line of 271 keV) as the only by-product (Supplemental Fig. 1B). After 48 h (> 10 half-lives of ⁴⁴Sc) the γ-spectrum of the same aliquot showed only remaining ^{44m}Sc and its decay product ⁴⁴Sc which proved the excellent radiochemical purity (Supplemental Fig. 1C).

Based on these results it was concluded that the production of ⁴⁴Sc from enriched ⁴⁴Ca-targets is the preferred method. As mentioned above, ⁴⁴Sc which is produced from enriched ⁴⁴Ca-targets, is obtained in much higher radiochemical purity compared to ⁴⁴Sc produced from natural Ca-targets. A further advantage of using enriched ⁴⁴Ca-targets is the much lower amount of ⁴⁴CaCO₃ (5-10 mg) which is required to obtain the same amount of ⁴⁴Sc as would be required if ^{nat}CaCO₃ (200 mg) was irradiated. A smaller amount of CaCO₃ is more favorable with regard to the separation procedure of ⁴⁴Sc(III) from Ca(II).

SUPPLEMENTAL FIGURE 1. (A) γ -Spectrum of a sample (1 mL) of irradiated ^{nat}CaCO₃ target material dissolved in HCl (3 M) 5 h after end of beam. (B) γ -Spectrum of a sample (1 mL) of irradiated enriched ⁴⁴CaCO₃ target material dissolved in HCl (3 M) 5 h after end of beam and (C) 48 h after end of irradiation.

2. Separation of ⁴⁴Sc from Irradiated ⁴⁴Ca-Targets

For separation of ⁴⁴Sc from irradiated ⁴⁴Ca-targets we developed a semi-automated separation system which was based on extraction chromatography and cation exchange chromatography. The experimental procedure is described in the main manuscript. A schematic illustration of the separation process is given in Supplemental Figure 2.

SUPPLEMENTAL FIGURE 2. Schematic illustration of the isolation of ⁴⁴Sc from proton-irradiated ⁴⁴Ca-targets (DGA = N, N, N', N'-tetra-*n*-octyldiglycolamide).

3. In Vitro Comparison of ⁴⁴Sc-cm09 and ¹⁷⁷Lu-cm09

Purpose. Formation of DOTA-complexes with ⁴⁴Sc(III) and ¹⁷⁷Lu(III) are supposed to occur according to the same coordination chemistry (*5*). In contrast to ⁶⁸Ga-DOTA-complexes, which differ significantly from ¹⁷⁷Lu-DOTA complexes, similar chemical characteristics of ⁴⁴Sc(III) and ¹⁷⁷Lu(III) would allow comparison of biomolecules labeled with either of these radioisotopes (*6*). In order to compare the characteristics of ⁴⁴Sc-cm09 with ¹⁷⁷Lu-cm09 we investigated the retention times of the compounds using the same HPLC method and determined the *n*-octanol/PBS distribution coefficients (LogD values). Both parameters are dependent on the hydrophilicity of a specific radioconjugate.

Experimental. High-performance liquid chromatography (HPLC) was performed using a C-18 reversed phase column (Xterra MS C18, 5 μ m, 15 cm x 4.6 cm, Waters) with a mobile phase consisting of MilliQ water with 0.1 % trifluoroacetic acid (A) and methanol (B) with a linear gradient from 95% A and 5% B to 20% A and 80% B over 25 min and a flow rate of 1 mL/min. The experimental procedure for the determination of the logD value is reported in the main manuscript and in previous publications (7, 8).

Results and Conclusion of the In Vitro Comparison of ⁴⁴Sc-cm09 and ¹⁷⁷Lucm09. Representative HPLC chromatograms of ⁴⁴Sc-cm09 and ¹⁷⁷Lu-cm09 are shown in Supplemental Fig. 3. The retention time of ⁴⁴Sc-cm09 (R_t = 19.6 min, Supplemental Fig. 3A) was about the same as obtained for ¹⁷⁷Lu-cm09 (R_t = 19.7 min, Supplemental Fig. 3B). The logD value of ⁴⁴Sc-cm09 was -4.49 \pm 0.12 as reported in the main manuscript. This value was similar to the logD value of ¹⁷⁷Lucm09 (-4.25 \pm 0.41) (7).

These results indicate similar characteristics of ⁴⁴Sc-cm09 and ¹⁷⁷Lu-cm09 with regard to their hydrophilicity. These findings are in agreement with the theory of identical coordination chemistry among the two radioisotopes ⁴⁴Sc and ¹⁷⁷Lu.

SUPPLEMENTAL FIGURE 3. Representative HPLC chromatograms of ⁴⁴Sccm09 (A) and ¹⁷⁷Lu-cm09 (B).

4. Additional PET Imaging Studies with ⁴⁴Sc-cm09

Purpose. In order to investigate FR specific accumulation of ⁴⁴Sc-cm09 in KB tumor xenografts, we also performed PET imaging studies with a tumor bearing mouse which was injected with excess folic acid prior to the radiotracer. It was expected that blockade of FRs by folic acid would result in a significant decline of ⁴⁴Sc-cm09 uptake in the tumor tissue.

Experimental Procedure. Imaging studies were performed with nude mice ~ 14 days after KB tumor cell inoculation. ⁴⁴Sc-cm09 (~ 25 MBq, ~ 6 nmol per mouse, 100 μ L) was injected either as a single agent or immediately after injection of excess folic acid (100 μ g in 100 μ L PBS). PET scans of 30 min duration were performed with each of the two mice 4 h after injection of the radioconjugate.

Results and Conclusion of Additional PET Imaging Studies with ⁴⁴Sc-cm09. PET images of a mouse which received folic acid prior to the injection of ⁴⁴Sc-cm09 showed reduced uptake of radioactivity in the tumor xenografts compared to the tumor uptake of ⁴⁴Sc-cm09 found in the mouse which received only ⁴⁴Sc-cm09. These results confirmed FR specific uptake of ⁴⁴Sc-cm09 since injection of excess folic acid blocked FRs and, hence, prevented uptake of ⁴⁴Sc-cm09 (Supplemental Fig. 4).

SUPPLEMENTAL FIGURE 4. PET images as coronal (A, B) and transaxial sections (C, D) of KB tumor bearing mice injected with ⁴⁴Sc-cm09 only (A, C) or with ⁴⁴Sc-cm09 and preinjected folic acid to block FRs (B, D).

5. In Vivo Biodistribution Data of ¹⁷⁷Lu-cm09

The tissue distribution data of ¹⁷⁷Lu-cm09 in KB tumor bearing nude mice at different time points after injection are given in Supplemental Table 1.

SUPPLEMENTAL TABLE 1

Biodistribution of ¹⁷⁷Lu-**cm09** in KB Tumor Bearing Female Nude Mice (7).

	¹⁷⁷ Lu-cm09			
	% injected dose per gram tissue*			
	1 h p.i.	2 h p.i.	4 h p.i.	24 h p.i.
Blood	8.15 ± 1.21	6.76 ± 0.95	4.38 ± 0.95	1.22 ± 0.19
Lung	4.58 ± 0.83	3.71 ± 0.65	2.70 ± 0.24	1.03 ± 0.20
Spleen	1.59 ± 0.25	1.50 ± 0.42	1.18 ± 0.19	0.63 ± 0.16
Kidneys	15.79 ± 2.13	23.23 ± 1.49	28.05 ± 1.35	30.09 ± 4.04
Stomach	2.04 ± 0.11	1.89 ± 0.59	1.45 ± 0.25	0.70 ± 0.14
Intestines	1.43 ± 0.31	1.07 ± 0.24	0.90 ± 0.20	0.29 ± 0.11
Liver	4.40 ± 0.14	3.98 ± 0.65	3.86 ± 0.65	1.80 ± 1.54
Salivary glands	6.78 ± 1.41	6.35 ± 1.05	6.23 ± 0.69	3.64 ± 0.49
Muscle	1.30 ± 0.06	1.31 ± 0.04	1.26 ± 0.06	0.96 ± 0.22
Bone	1.48 ± 0.08	1.49 ± 0.16	1.23 ± 0.14	0.62 ± 0.13
Tumor	10.84 ± 1.32	14.67 ± 1.65	18.12 ± 1.80	19.46 ± 3.13
Tumor-to-blood	1.36 ± 0.27	2.18 ± 0.18	4.32 ± 1.15	16.02 ± 1.52
Tumor-to-liver	2.47 ± 0.31	3.71 ± 0.30	4.73 ± 0.39	7.77 ± 0.62
Tumor-to-kidney	0.69 ± 0.04	0.63 ± 0.06	0.65 ± 0.07	0.65 ± 0.07

* values shown represent the mean \pm S.D. of data from three animals (n=3) per cohort

6. Comparison of ⁴⁴Sc and ⁶⁸Ga PET Using Derenzo Phantoms

Purpose. In order to investigate the resolution and PET image quality of ⁴⁴Sc and ⁶⁸Ga we performed a site-by-site comparison of these two radioisotopes using Derenzo phantoms and a small-animal PET scanner.

Experimental Procedure. PET scans of Derenzo phantoms were performed with a dedicated small-animal PET/CT camera (Vista eXplore, GE Healthcare). Two Derenzo phantoms with hole-diameters ranging from 0.8 to 1.3 mm, in 0.1-mm steps

were filled with ~ 9 MBq of 68 Ga(III) and ~ 9 MBq of 44 Sc(III), respectively, in a volume of 600 μ L. Static PET scans of 30 min duration were acquired of each phantom. Reconstruction of PET data was performed using the instrument's software. For reconstruction, the 2-dimensional ordered-subset expectation maximization (2D-OSEM) algorithm was used.

Results and Conclusion Comparison of ⁴⁴Sc and ⁶⁸Ga PET Using Derenzo Phantoms. PET imaging of a Derenzo phantom filled with ⁴⁴Sc revealed an excellent resolution of ~1.2 mm (Supplemental Fig. 5A). These findings were similar or even superior to those obtained with an equivalent Derenzo phantom filled with about the same amount of ⁶⁸Ga-radioactivity (Supplemental Fig 5B).

SUPPLEMENTAL FIGURE 5. PET images of Derenzo phantoms. A: 44 Sc (~ 9 MBq, scan time: 30 min) and B: 68 Ga (~ 9 MBq, scan time: 30 min).

REFERENCES

- 1. Severin GW, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ. Cyclotron produced ^{44g}Sc from natural calcium. *Appl Radiat Isot*. 2012;70:1526-1530.
- 2. Krajewski S, Cydzik I, Abbas K, et al. Simple procedure of DOTATATE labelling with cyclotron produced ⁴⁴Sc and ⁴³Sc. *Nucl Med Rev.* 2012;15:A22-A46.
- Kamel A, Izabela C, Federica S, Seweryn K, Agata K, Aleksander B. Cyclotron production of ⁴⁴Sc - new radionuclide for PET technique. *J Labelled Compd Rad.* 2011;54:S53-S53.
- 4. Zhernosekov K, Bunka M, Schibli R, Türler A. Development of ⁴⁴Sc production for radiopharmaceutical applications. *Radiother Oncol.* 2012;102:S141.
- 5. Viola-Villegas N, Doyle RP. The coordination chemistry of 1,4,7,10tetraazacyclododecane-*N*,*N'*,*N''*,*N'''*-tetraacetic acid (H₄DOTA): Structural overview and analyses on structure-stability relationships. *Coordin Chem Rev.* 2009;253:1906-1925.
- 6. Majkowska-Pilip A, Bilewicz A. Macrocyclic complexes of scandium radionuclides as precursors for diagnostic and therapeutic radiopharmaceuticals. *J Inorg Biochem.* 2011;105:313-320.
- 7. Müller C, Struthers H, Winiger C, Zhernosekov K, Schibli R. DOTA conjugate with an albumin-binding entity enables the first folic acid-targeted ¹⁷⁷Luradionuclide tumor therapy in mice. *J Nucl Med.* 2013;54:124-131.
- 8. Müller C, Mindt TL, de Jong M, Schibli R. Evaluation of a novel radiofolate in tumour-bearing mice: promising prospects for folate-based radionuclide therapy. *Eur J Nucl Med Mol Imaging.* Jun 2009;36:938-946.