MATERIALS and METHODS

Reagents

Trace-metal grade hydrochloric acid was purchased from Fisher Scientific (Fair Lawn, NJ). Water was obtained from Milli-Q Synthesis system (Billerica, MA). HEPES, Sigma-ultra grade, chelex-100 and L-ascorbic acid (ACS reagent grade) were purchased from Sigma-Aldrich (St. Louis, MO). Clear polypropylene, self-standing 2 mL screw-cap tubes with "O" rings were purchased from Axygen Scientific (Union City, CA). Oasis® HLB (reverse phase) 1cc cartridges were obtained from Waters (Milford, MA).

Radiolabeling

¹¹¹In-IMP288 was prepared as described previously (1), with excess DTPA
(diethylenetriaminepentaacetic acid) added at the completion of the labeling procedure. ITLC
indicated <3% unbound radionuclide, and final specific activity was 36.8 MBq/nmol (0.995 mCi/nmol).

⁶⁸Ga-IMP288 was prepared by adding IMP288 to all or a portion of the second fraction isolated from the generator, along with 1.0 M HEPES, pH 6.9, with early studies showing improved recoveries using a ratio of one-eighth of the total ⁶⁸Ga volume, and therefore most of the radiolabeled preparations reported used this ratio. For example, to prepare ⁶⁸Ga-IMP288 at a starting specific activity of 888 MBq/nmol (24 mCi/nmol), 6.4 µL of IMP288 (6.5 x10⁻⁵ M) and 90 µL of 1.0 M HEPES, pH 6.9, were added to 720 µl of ⁶⁸GaCl₃ (9.9 mCi). The reaction vial was repeatedly centrifuged to ensure the contents were collected in the bottom. After heating in a boiling water bath for 12 minutes, the vial was cooled in an ice bath to room temperature, the vial, and then 0.1 M EDTA, pH 5.5, was added to a final concentration of 5 mM. The mixture was transferred to an Oasis HLB cartridge for purification 2 min later. After collecting the flow

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 52 • No. 3 • April 2011

Karacay et al.

through, the cartridge was washed with 3 x 1.0-mL aliquots of water. The labeled peptide was eluted with 2 x 200- μ L aliquots of water:ethanol (1:1) mixture into a vial containing 50 μ L of 300 mg/mL ascorbic acid and further diluted with saline to the desired concentration.

The peptide concentration at the onset ranged from 400-650 nM, with the peptide being in 116-fold mole excess of the ⁶⁸Ga-activity for preparations that started with a specific activity of 0.888 GBq/nmol, and 200-250 nM and a 56:1-fold mole excess for preparations that started with a specific activity of 1.776 GBq/nmol (48 mCi/nmol). All calculations of final specific activity assumed full recovery of IMP288 from the HLB column.

Reverse-phase HPLC (RP-HPLC) analyses were performed on a Waters Nova-Pak C18 4 μ m, 8 x 100 μ m Radial-Pak cartridge (Milford, MA). The column was eluted over 15 min at 1.5 mL/min with a linear gradient of 100% A (0.075% trifluoroacetic acid in water) to 45% B, where B was 0.075% trifluoroacetic acid in 75% acetonitrile and 25% water. At 15 min, the solvent was switched to 100% B and maintained for 5 min before re-equilibration to initial conditions. Size-exclusion HPLC (SE HPLC; BioSil SE 250 SE column and guard column equipped with an in-line UV and radiation detector) analyses were performed to assess binding of the HSG portion of IMP288 by mixing the labeled IMP288 with the bsMAb TF2 in 20-fold mole excess to the peptide.

Animal Studies

LS 174T and HT-29 (American Tissue Culture Collection, Manassas, VA) human colonic cancer cell lines were implanted subcutaneously (1 x 10^7 cells) in 5- to 6-week old female athymic NCr nu-m nude mice (Taconic Farms, Germantown, NY). The radiolabeled product, diluted in saline, was administered intravenously in ≤ 0.2 mL. For pretargeting, the doses of TF2 and IMP288 were adjusted to yield a prescribed mole ratio (i.e., moles of TF2 to IMP288 administered, typically 25:1). At 1 or 3 h post peptide injection, mice were anesthetized, bled by cardiac puncture, and then euthanized by cervical dislocation. Tissues were isolated, weighed and counted in a gamma counter along with a standard representing a dilution of the injected product.

RESULTS

Generator Elution

Generator elutions were initiated 28 days after its calibration date. From there on, it was eluted 98 times for a total activity of 2465 mCi over a period of 350 days from the calibration date. Most of the elutions were performed once a day with ~18- to 24-h interval between each elution over 5 days.

The amount of 68 Ge in 68 Ga (Fraction #2) was only 2-8.1 Bq per 37 MBq of 68 Ga, except for two instances, where it was 23.7 and 18.3 Bq per 37 MBq 68 Ga between Day 160 to Day 350. We also determined the presence of 68 Ge in HLB-purified 68 Ga-IMP288, the flow-through, and water washes from HLB, and on the HLB cartridge. The results showed: (A) 68 Ge was present primarily in the flow-through and in the water washes, indicating the HLB-purification assisted not only in the removal of any unbound 68 Ga, but also 68 Ge; (B) some 68 Ge was retained on the HLB cartridge; and more importantly, (C) 68 Ge was most often not detected in aliquots of purified 68 Ga-IMP288, or when present, >98% of the 68 Ge found in the 68 Ga used for radiolabeling was removed, except for one instance where the removal of 68 Ge was only 95%.

Reference

1. McBride WJ, Zanzonico P, Sharkey RM, et al. Bispecific antibody pretargeting PET (immunoPET) with an ¹²⁴I-labeled hapten-peptide. *J Nucl Med.* 2006;47:1678-1688.