The time-coordinate of the cutting point from any two individual linear SUV courses f and g, referred to as $\mathrm{t}_{\text {ref }}$, is obtained by:
$t_{r e f}=\frac{a_{g}-a_{f}}{\mathrm{~b}_{\mathrm{f}}-b_{g}}$
eq 1
with a and b being the intercept and slope of the corresponding linear SUV course. As a next step, the individual intercepts a_{f} and a_{g} from line f and g are eliminated:
$\mathrm{b}_{i}\left(S U V_{t 0}\right)=\mathrm{a}^{\prime}+\mathrm{b}^{\prime} \cdot S U V_{t 0}$
eq 2

From equation (2) for the secondary linear relationship between individual SUV slopes (b_{i}) and measured SUVs at a fixed time point $\left(t_{0}\right)$ one can calculate the slope b_{f} and b_{g} of line f and line g in dependency on the intercept and slope, a^{\prime} and b^{\prime}, of the secondary underlying linear relationship and resolve equation 2 for the individual intercepts a_{f} and a_{g} (exemplarily shown for line f):
$\mathrm{b}_{f}=\mathrm{a}^{\prime}+\mathrm{b}^{\prime} \cdot\left(a_{f}+b_{f} \cdot t_{0}\right)$
$\Rightarrow \mathrm{a}_{\mathrm{f}}=\frac{b_{f}-\mathrm{a}^{\prime}}{\mathrm{b}^{\prime}}-b_{f} \cdot t_{0}$

$$
\text { eq } 3
$$

This expression for a_{f} and a_{g}, respectively, can now be inserted into eq 1 yielding

$$
\begin{aligned}
& t_{\text {ref }}=\frac{\frac{b_{g}-a^{\prime}}{b^{\prime}}-b_{g} \cdot t_{0}-\left(\frac{b_{f}-a^{\prime}}{b^{\prime}}-b_{f} \cdot t_{0}\right)}{b_{f}-b_{g}} \\
& =\frac{t_{0}\left(b_{f}-b_{g}\right)-\frac{\left(b_{f}-b_{g}\right)}{b^{\prime}}}{b_{f}-b_{g}} \\
& =t_{0}-\frac{1}{b^{\prime}}
\end{aligned}
$$

The resulting expression for $t_{\text {ref }}$ is not dependent on any individual intercepts a_{i} nor on individual slopes b_{i}.

The SUV-coordinate of the reference point, i.e. $S U V_{\text {ref, }}$, is found by inserting $t_{\text {ref }}$ into any individual time course, e.g. line f:

$$
\begin{equation*}
S U V_{r e f}=\mathrm{a}_{f}+b_{\mathrm{f}} \cdot\left(\mathrm{t}_{0}-\frac{1}{\mathrm{~b}^{\prime}}\right) \tag{eq 5}
\end{equation*}
$$

By inserting the expression for the individual intercept of line $f\left(a_{f}\right.$ from eq 3) one ends up with

$$
\begin{aligned}
& S U V_{\text {ref }}=\frac{b_{f}-\mathrm{a}^{\prime}}{\mathrm{b}^{\prime}}-b_{f} \cdot t_{0}+b_{\mathrm{f}} \cdot\left(\mathrm{t}_{0}-\frac{1}{\mathrm{~b}^{\prime}}\right) \\
& =-\frac{a^{\prime}}{b^{\prime}}
\end{aligned}
$$

