The time-coordinate of the cutting point from any two individual linear SUV courses f and g, referred to as t_{ref} , is obtained by:

$$t_{ref} = \frac{a_g - a_f}{b_f - b_g}$$
 eq 1

with a and b being the intercept and slope of the corresponding linear SUV course. As a next step, the individual intercepts a_f and a_g from line f and g are eliminated:

$$\mathbf{b}_i(SUV_{t0}) = \mathbf{a}' + \mathbf{b}' \cdot SUV_{t0} \qquad \text{eq 2}$$

From equation (2) for the secondary linear relationship between individual SUV slopes (b_i) and measured SUVs at a fixed time point (t_0) one can calculate the slope b_f and b_g of line f and line g in dependency on the intercept and slope, a' and b', of the secondary underlying linear relationship and resolve equation 2 for the individual intercepts a_f and a_g (exemplarily shown for line f):

$$b_{f} = \mathbf{a}' + \mathbf{b}' \cdot (a_{f} + b_{f} \cdot t_{0})$$

$$\Rightarrow \mathbf{a}_{f} = \frac{b_{f} - \mathbf{a}'}{\mathbf{b}'} - b_{f} \cdot t_{0}$$

eq 3

This expression for a_f and a_q, respectively, can now be inserted into eq 1 yielding

$$t_{ref} = \frac{\frac{b_g - a'}{b'} - b_g \cdot t_0 - (\frac{b_f - a'}{b'} - b_f \cdot t_0)}{b_f - b_g}$$

= $\frac{t_0 (b_f - b_g) - \frac{(b_f - b_g)}{b'}}{b_f - b_g}$ eq 4
= $t_0 - \frac{1}{b'}$

The resulting expression for t_{ref} is not dependent on any individual intercepts a_i nor on individual slopes b_i .

The SUV-coordinate of the reference point, i.e. SUV_{ref} , is found by inserting t_{ref} into any individual time course, e.g. line f:

$$SUV_{ref} = \mathbf{a}_f + b_f \cdot (\mathbf{t}_0 - \frac{1}{\mathbf{b}'}) \qquad \text{eq 5}$$

By inserting the expression for the individual intercept of line f (a_f from eq 3) one ends up with

$$SUV_{ref} = \frac{b_f - a'}{b'} - b_f \cdot t_0 + b_f \cdot (t_0 - \frac{1}{b'})$$
$$= -\frac{a'}{b'}$$

eq 6